
NYU Shanghai DATS-SHU 240: Final Project Report

Optimization of Water Cooler Placement

Hammond Liu and Shizhao Yang

Abstract. This project investigates the optimal placement strategy of water coolers.
Specifically, we convert continuous spatial regions to a discrete network with popularity
weights and build an optimization model to find the best spots. We apply the proposed
methodology on the 3rd floor of the New Bund campus and obtain some promising
placement plans. The code is available at: https://github.com/hmdliu/Optim-SP23.

1 Introduction

1.1 Background
Staying hydrated is a daily necessity. The National Academy of Medicine suggests

an adequate intake of daily fluids of 13 cups 1 and 9 cups for healthy men and women,
respectively [1]. Correspondingly, exploring effective strategies for ensuring that the
locations of water coolers within expansive public edifices can adequately cater to
the daily hydration requirements of the individuals who study and work within these
premises has emerged as a highly pertinent subject of discussion.

As students, we undoubtedly need enough water intake during lecture intermissions
or after a long study session. However, some students may reflect on the inconvenience
of the relatively long distance from some open study areas to the nearest water cooler.
Therefore, it is both essential and practical to optimize the water cooler placement on
the New Bund campus.

1.2 Problem Description
For the sake of time and feasibility, this project will focus on the 3rd floor of the

New Bund campus and solve for the optimal placement strategy given a fixed number of
water coolers. In particular, we want to minimize the total distance to the nearest water
cooler for all on-campus population. In Section 2, we manifest our methodology and
present the formal formulation of the problem. In Section 3, we elaborate on our data
sources and the processing procedures. Lastly, the findings of the study are consolidated
and presented in Section 4.

11 cup = 8 fl oz or 237 ml.

1

mailto:hl3797@nyu.edu
mailto:sy2821@nyu.edu
https://github.com/hmdliu/Optim-SP23

2 Methodology

2.1 From a Map to a Network
To model continuous spatial region effectively and efficiently, a natural approach

is to convert it to a discrete network G(V,E), where the vertices (V) denote different
spatial locations and the edges (E) correspond to the distance between the vertices.
Accordingly, our objective is to find the best way of placing a fixed number of water
coolers on some of the vertices, such that the total distance to the nearest water cooler is
minimized for all on-campus population. More details about how we convert the 3rd
floor of the New Bund campus to a discrete network are covered in Section 3.1.

In the context of this project, we mainly focus on the shortest path distance to the
nearest water cooler vertex as well as the popularity (i.e., the population distribution)
of each vertex. The former can be efficiently computed using the Dijkstra’s algorithm,
which is introduced in Section 2.2; the latter can be obtained through an online survey,
which is discussed in Section 3.2.

2.2 Shortest Path Distance
For simplicity, we assume that everyone will follow the shortest path to travel to

the nearest water cooler. On a network G(V,E), the shortest path distance refers to the
minimum edge weights (i.e., geographical distance) needed to move from a starting
vertex to a target vertex. In our case, the starting vertex can be any vertices, and the target
vertices are the ones with water coolers. Figure 1 shows a sample network G(V,E).
For example, the shortest path from vertex V1 to vertex V5 should be V1 → V2 → V5,
with a shortest path distance of 27.

Figure 1: An example of the network G(V,E).

There are several algorithms that can be used to calculate the shortest path distance,
such as Dijkstra’s algorithm, Bellman-Ford algorithm, and Floyd-Warshall algorithm.
We use the Dijkstra’s algorithm for this project. Dijkstra’s algorithm works by main-
taining a priority queue of vertices with the smallest distance. The algorithm starts
from the source vertex and explores all the adjacent vertices, updating the distance and
adding them to the priority queue if they are not already visited. It then selects the vertex
with the smallest distance from the queue and repeats the process until it reaches the

2

target vertex or all vertices are visited. An implementation of Dijkstra’s algorithm (in
Python-like pseudo code) is attached below:

1 def dijkstra(graph, start):
2 # init distance and the starting vertex
3 unvisited = set(graph.keys())
4 dist = {v: float(’inf’) for v in unvisited}
5 dist[start] = 0
6 # visit all vertices
7 while unvisited:
8 current = min(unvisited, key=lambda v: dist[v])
9 unvisited.remove(current)

10 # check all adjacent vertices
11 for neighbor, cost in graph[current].items():
12 tentative_dist = dist[current] + cost
13 if tentative_dist < dist[neighbor]:
14 dist[neighbor] = tentative_dist
15 return dist

We apply the Dijkstra’s algorithm to compute the shortest path distance between
any pair of vertices (since the water cooler can be placed on any vertices). Note that we
are modeling a continuous spatial region, so the converted network should only have
one connected component, which means we are able to visit any other vertices from
each vertex. By doing so, we can obtain a shortest path distance matrix. Remarkably,
this matrix can also be viewed as a strongly connected version of the original graph.

2.3 Model Formulation
In this section, we introduce the parameters and decision variables in the proposed

model. We still consider a network G(V,E), where V is the set vertices and E is the
set of edges. Let p ∈ R|V | denote the popularity vector that describes the popularity
distribution over all vertices, where pv denotes the normalized popularity score at
vertex v. Note that vector p is a pre-computed parameter. Let D ∈ R|V |×|V | be the
pre-computed shortest path distance matrix (discussed in Section 2.2), then for a vertex
pair (u, v), we can denote the shortest path distance between them as Du,v. Let K
denotes the total capacity of the water coolers.

As for the decision variables, we define a binary assignment matrix a ∈ R|V |×|V |,
where the first dimension denotes the source vertex u (i.e., any vertices in the network)
and the second dimension denotes the target vertex v (i.e., water cooler vertices), and an
entry is equal to 1 if the need at vertex u is going to be served by vertex v. Besides, we
introduce x ∈ R|V |, a vector of binary variables that entails whether we place a water
cooler at each vertex.

3

Formally, we can formulate the optimization problem as follows:

min
a

z =
∑
u

∑
v

puau,vDu,v,

s.t. au,v ∈ {0, 1},∀u, v ∈ V,

xv ∈ {0, 1},∀ v ∈ V,∑
v

au,v ≥ 1,∀u, v ∈ V,

xv ≥ au,v,∀u, v ∈ V,∑
v

xv ≤ K,

where the objective z is to minimize the popularity-weighted shortest path distance; the
first two constraints enforce all the entries of a and x to binary; the third constraint
ensures each vertex is assigned to at least one water cooler vertex (i.e., all the demands
are served); the forth constraint ensures xv = 1 if v will be served as a water cooler
vertex (xv = 0 otherwise); the last constraint ensures the total number of allocated
water coolers is within the given capacity.

3 Data Description

3.1 Network Building
In the process of fashioning a complete graph, we initially harness the comprehensive

map of the 3rd floor as a reference for constructing a preliminary network G(V,E),
adhering to the following rules. In general, we establish a vertex in instances where
it constitutes an open space (for example, study zones or corridors) or is situated in
proximity to the exits of partitioned rooms, thereby accounting for the likelihood of
encountering a significant population segment. Moreover, we allocate several vertices
uniformly throughout the map, ensuring optimal locations for water cooler installations
are considered. In this way, we fashion 54 vertices in total (Figure 2). On top of that,
we build 75 edges between adjacent vertices, considering their actual inter-connectivity,
while the spatial distance ascribes the corresponding lengths measured with Adobe (an
example can be found in Figure 5 of Appendix A). Hence, we successfully assemble a
connected network G(V,E).

Then we apply the Dijkstra’s algorithm to compute the shortest path distance between
all vertex pairs. Figure 3 presents a visualization of the shortest path distance D. The
ordering of the vertices follows: North → East → South → West. A brighter color
indicates a larger shortest path distance, whereas a darker color entails that the two
vertices are closer to each other. From the figure, we can clearly observe that the
diagonal region is overall darker because the entries along the diagonal corresponds to
adjacent vertex pairs, which is geographically closer to each other.

4

Figure 2: Vertex Distribution of the 3rd Floor

Figure 3: Visualization of the shortest path distance matrix D.

5

3.2 Popularity Modeling
Meanwhile, the population distribution p is estimated by an online survey. The

survey consists of three parts: the first part asks the participants to rate their likelihood
(from 1 to 5) of staying in a certain open area (e.g., study zones or corridors); the
second part requires participants to indicate the number of classrooms they attend and
the weekly frequency of their visits to each classroom; the final part inquires about the
ratio of time spent in open areas versus classrooms, allowing conversion of classroom
visit frequency into likelihood scores. As a result, we’ve collected a total amount of 68
effective surveys from all classes of NYU Shanghai students. We compute the mean
of likelihood scores for both open areas and classrooms after data collection, then
normalize these scores to a 0 to 1 scale utilizing the following formula:

S̃v =
Sv − Smin

Smax − Smin

where Sv denotes the original likelihood score for vertex v.

Figure 4: Histogram of the normalized popularity scores.

As depicted in the histogram of normalized popularity scores in Figure 4, the
scores exhibit a long-tail distribution. There are 14 out of 54 vertices possessing low
popularity scores ranging between 0 and 0.05, suggesting minimal student presence in
these areas, which often include corridors or secluded corners. Conversely, two vertices
(S03 and E14) boast significantly high scores nearing 1. These vertices are situated
near classrooms with a high weekly lecture frequency (e.g., E304) and in proximity to
clustered open study spaces.

6

4 Results & Discussion
We implement the proposed optimization model using GAMS and solve for the

optimal placement plans when K = 1, 2, 3, 4, 5. The optimal water cooler vertices are
shown in Table 1. We also highlight their corresponding positions on the map, which
can be found in Appendix B. We also attach the GAMS code in Appendix C.

Capacity (K) Optimal Water Cooler Vertices

K = 1 E12
K = 2 E12, W07
K = 3 N04, E12, S15
K = 4 N09, E12, S15, W09
K = 5 N09, E08, S01, S15, W09

Table 1: Optimal water cooler vertices. The vertices shown in bold are the ground-truth
water cooler positions (i.e., water coolers physically present at these spots).

Broadly speaking, the Magnolia Hall in the east building is the most popular spot on
the 3rd floor for classes and self-studying, so it is reasonable to place the water cooler
at vertex E12 when K = 1. When K = 2, the second water cooler is placed at vertex
W07, which is a popular study area that is opposite to vertex E12. When K = 3, the
three water coolers roughly form a equilateral triangle on the map. When K is set to 4
or larger, there will be at least one water cooler being placed in each building. Overall,
the placement plans obtained via the proposed model are quite promising.

Furthermore, it is worth mentioning that the proposed model is able to provide
insightful suggestions for all sorts of placement problem, such as vending machines
and restrooms. Taking the case of K = 4 as an example, the model suggests to place
the water coolers at vertex N09, E12, S15, and W09. Interestingly, three of them
(N09, E12, S15) are precisely the true positions of the vending machines.

The future work of this project mainly lies in the data perspective. On the one hand,
the network building stage can be further polished to better abstract the spatial structure;
on the other hand, collecting more high-quality data can further improve the accuracy of
the placement suggestions, which may potentially involve designing more sophisticated
survey questions and inviting more participants.

Acknowledgement
We thank Professor Zhibin Chen for his suggestions on the project.

References
[1] Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate.

National Academies Press, May 2005.

7

Appendix A: Adjacency List for the Network

Figure 5: Example of the adjacency list that represents G(V,E).

8

Appendix B: Map View of the Optimal Solutions

(a) K = 1 (b) K = 2

(c) K = 3 (d) K = 4

Figure 6: Map view of the optimal solutions.

9

Appendix C: GAMS Implementation

1 set
2 v_n north /N01*N12/
3 v_e east /E01*E15/
4 v_s south /S01*S18/
5 v_w west /W01*W09/
6 v vertices /#v_n, #v_e, #v_s, #v_w/;
7 alias (v, u);
8 parameter
9 K num of water coolers

10 p(v) normalized popularity vector
11 D(v, u) shortest path distance matrix;
12 variable
13 z objective;
14 binary variable
15 a(v, u) assignment matrix
16 sol(u) water cooler placement;

18 * load distance matrix
19 $CALL GDXXRW.EXE D.xlsx par=D rng=A1:BC55
20 $GDXIN D.gdx
21 $LOAD D
22 $GDXIN
23 display D;
24 * load popularity vector
25 $CALL GDXXRW.EXE p.xlsx par=p rdim=1 rng=A1:B54
26 $GDXIN p.gdx
27 $LOAD p
28 $GDXIN
29 display p;
30 * init num of water coolers
31 K = 3;

33 * define equations
34 equations
35 obj total popularity-weighted distance
36 cap_cons capacity constraint
37 ser_cons(v) serving constraint
38 sol_cons(v, u) sol constraint;
39 obj.. z =e= sum((v, u), p(v) * a(v, u) * D(v, u));
40 sol_cons(v, u).. sol(u) =g= a(v, u);
41 ser_cons(v).. sum(u, a(v, u)) =g= 1;
42 cap_cons.. sum(u, sol(u)) =l= K;

44 * solve the problem
45 model placement /all/;
46 solve placement using mip minimizing z;
47 display z.l, sol.l;

10

	Introduction
	Background
	Problem Description

	Methodology
	From a Map to a Network
	Shortest Path Distance
	Model Formulation

	Data Description
	Network Building
	Popularity Modeling

	Results & Discussion

