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Abstract

Numerous parameter-efficient tuning methods
have been proposed to reduce the computa-
tion and storage burden of standard fine-tuning.
However, these methods are generally evalu-
ated on large-scale benchmarks, which may
not secure their robustness in low-data regimes.
This work further evaluates the effectiveness
and efficiency of several representative meth-
ods when different amounts of training sam-
ples are provided. The experiments have been
conducted on various downstream tasks, which
could provide empirical guidance on the choice
of methods. The code is available at: https:
//github.com/hmdliu/MLLU-S22.

1 Introduction

Pre-trained language models (PLMs) have achieved
great success in processing natural languages. Fine-
tuning, though found effective by some predom-
inant works like BERT (Devlin et al., 2019) and
GPT (Brown et al., 2020), needs to store a model
copy for each downstream task and update all the
parameters for adaption, which is not efficient in
terms of storage and computational resources.

To alleviate this issue, there have been many
works exploring how to adapt PLMs to downstream
tasks effectively and efficiently (Houlsby et al.,
2019; Zaken et al., 2021; Hu et al., 2021; Li and
Liang, 2021; Lester et al., 2021). In general, these
methods tune a small set of adaptive parameters
(inherently in the model or additionally introduced)
instead of the whole PLM - such a paradigm is
termed as delta tuning by Ding et al. (2022).

The evaluation of delta tuning methods are usu-
ally conducted on benchmarks (e.g., GLUE, Super-
GLUE) or datasets (e.g., E2E, XSUM), where the
amount of training samples are generally fixed and
sufficient for the downstream task adaption (Wang
et al., 2018, 2019; Novikova et al., 2017; Narayan
et al., 2018). However, downstream tasks are likely

to have limited training data, so the effectiveness
and efficiency of different delta tuning methods
may vary a lot depending on the number of training
samples provided.

To address this potential vulnerability, we set up
a unified testing framework to compare the perfor-
mance and convergence speed of different delta
tuning methods while varying the scale of training
data. The experiments are conducted across various
downstream tasks, including sentiment analysis,
natural language inference, machine reading com-
prehension, and multi-choice question answering.
We hope this work can provide empirical guidance
for method selection.

2 Related Works

This section introduces the categorization of delta
tuning methods and some representative methods
to be evaluated. As Figure 1 illustrates, delta tun-
ing methods can be categorized as addition-based,
specification-based, and reparameterization-based
methods, which are differentiated by the usage of
adaptive parameters (Ding et al., 2022).
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Figure 1: Illustrations of delta tuning categorization,
where the pre-trained parameter set (Θ) is mapped to
the well-tuned parameter set (Θ′) with a split of frozen
and tunable parameters. The figure is drawn from Ding
et al. (2022) for demonstration purpose.

2.1 Addition-based Method

Addition-based methods introduce new tunable
modules or some set of trainable parameters to
the original model architecture (Ding et al., 2022).
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Houlsby et al. (2019) proposes to insert small
and tunable Adapter modules between layers of a
pre-trained network. The Adapter module passes
the features through a down-projection, a non-
linearity, and an up-projection to adapt the PLM
representations to downstream tasks.

2.2 Specification-based Method

Specification-based methods select a subset of pa-
rameters from the pre-trained model and make
them trainable while freezing the remaining pa-
rameters in the model (Ding et al., 2022).

Zaken et al. (2021) tunes all the bias terms in the
original PLM, which means the thresholds of non-
linear activation are thus adjusted for downstream
task adaption. Though the bias terms are merely an
extremely small portion, this method still surpris-
ingly well, especially on small-scale models.

2.3 Reparameterization-based Method

Reparameterization-based methods convert the ex-
isting parameters to a parameter-efficient form via
some reparameterization tricks (Ding et al., 2022).

Hu et al. (2021) hypothesizes that the change of
weights during model adaptation has a low intrinsic
rank. Accordingly, we can inject trainable low-rank
decomposition matrices to replace the self-attention
weight matrices. This significantly reduces the
number of trainable parameters and retains perfor-
mance that is comparable to fine-tuning.

3 Method

3.1 Evaluation Methodology

In a recent paper, Ding et al. (2022) conduct a
comprehensive study on different aspects of delta
tuning. We largely adopt their unified testing frame-
work and extend their study in low-data regimes,
which basically investigates the variations of the
performance and efficiency when different portions
of training samples are provided.

Specifically, we sample subsets from each
dataset by a log scale (i.e., 0.1%, 1%, 10%, 100%)
to construct a series of training set for evaluation.
Then we apply the selected delta tuning methods on
these subsets to observe the average metrics and the
speed of convergence, which would demonstrate
the robustness of different methods with limited
data. Notably, the module or structure of each
delta tuning method follows the default settings in
the original paper; the configurations of training

and hyper-parameter search are also unified. More
implementation details are discussed in Section 4.1.

We hypothesize that the performance and con-
vergence speed of a delta tuning method is propor-
tional to the scale of its tunable parameters.

3.2 Pre-trained Language Model

We use T5-Base as the default PLM backbone
for evaluation (Raffel et al., 2020). Moreover, we
use the checkpoints released by Lester et al. (2021),
which conducts an additional 100k steps of LM
adaption. As T5 (Raffel et al., 2020) modulates all
downstream tasks in a text-to-text format and pre-
trains on a span corruption objective, these extra
training steps were shown effective for boosting
performance and convergence speed.

3.3 Dataset

To evaluate the selected delta tuning methods com-
prehensively, we use four large and representative
datasets targeting distinctive downstream tasks.
MultiNLI. Multi-Genre Natural Language Infer-
ence corpus is a crowd-sourced collection of 433k
sentence pairs annotated with textual entailment
information of three categories (i.e., neutral, entail-
ment, or contradiction) (Williams et al., 2018).
RACE. RACE is a reading comprehension dataset
with roughly 28k passages and 100k multiple-
choice questions; the dataset is collected from
English examinations for middle school and high
school students in China (Lai et al., 2017).
SQuAD. Stanford Question Answering Dataset is
a reading comprehension dataset that requires text-
based answers; we use SQuAD v1.1 for this work,
which consists of more than 100k question-answer
pairs on over 500 articles (Rajpurkar et al., 2016).
Yelp Polarity. Yelp Polarity is a sentiment analysis
dataset with a set of 560k highly polarized yelp re-
views for training, and 38k for testing. The dataset
is constructed by Zhang et al. (2015) based on the
Yelp Dataset Challenge 2015 data1.

4 Experiment & Analysis

4.1 Implementation Details

The codebase is implemented based on the Hug-
ging Face library (Lhoest et al., 2021). The
sequence-to-sequence trainer is adopted from Ma-
habadi et al. (2021) and the implementation of delta

1The challenge web page is defunct, the Yelp dataset is
now available at: https://www.yelp.com/dataset

https://www.yelp.com/dataset


tuning methods is based on the OpenDelta library
by Ding et al. (2022).

We use the AdamW optimizer (Loshchilov and
Hutter, 2019) and apply a random search with 8
trials to find a fair training setting for each method.
As shown in Table 1, the hyper-parameters includes
learning rate, batch size, and max steps. As RACE
and SQuAD have long inputs, we shrink their batch
size search space and enlarge the max input length
to 512 and 384 respectively (Rajpurkar et al., 2016;
Lai et al., 2017). For MultiNLI and Yelp Polar-
ity, we search the batch size between 16 and 32
and set the max input length to 128 (Zhang et al.,
2015; Williams et al., 2018). To accommodate the
low-data regimes, we apply early stopping with a
patience of 3, and the evaluation is done every 2k
steps (due to the job time limit on GCP).

Hyper-parameter Search Space

Learning Rate loguniform(1e-5, 1e-3)
Batch Size {4, 8} or {16, 32}
Max Steps {10k, 20k, 40k}

Table 1: Settings for hyper-parameter search.

Following OpenDelta implementation (Ding
et al., 2022), we insert Adapter modules (Houlsby
et al., 2019) with SiLU activations and a bottleneck
dimension of 64; for BitFit (Zaken et al., 2021), we
tunes all the bias terms by default; for LoRA (Hu
et al., 2021), we use decompositions of rank 4 to
reparameterize the attention module method.

4.2 Results & Analysis

We report the average metrics (%) under different
downstream tasks and training data ratio in Table
2 and visualize the results in Figure 2. We use the
exact match and F-1 scores for SQuAD and a single
accuracy metric for the others.

Besides, some experiment details regarding the
datasets are addressed as follows: 1) SQuAD has
closed the test server for v1.1, so we evenly split the
original development set as our new development
and test set before all the experiments; 2) Yelp
Polarity doesn’t have a public development set, so
we randomly chop off 38,000 samples from the
training set for validation purpose, which has the
same size as the public test set; 3) For MultiNLI,
we were unable to evaluate our models on the test
server for time reason, so the average metrics we
reported in Table 2 are the accuracy evaluated on

Dataset AP BF LR FT

Tunable Ratio 2.38% 0.10% 0.38% 100%

Training Data Ratio: 100%

MultiNLI 87.18 84.34 84.81 87.41
RACE 70.35 62.12 69.14 74.09
SQuAD v1.1 75.93 73.75 74.85 76.84
Yelp Polarity 96.27 95.82 95.99 96.47

Training Data Ratio: 10%

MultiNLI 83.11 81.04 80.65 82.55
RACE 54.68 52.12 53.53 57.15
SQuAD v1.1 70.79 67.97 68.77 70.48
Yelp Polarity 95.40 95.08 94.87 95.37

Training Data Ratio: 1%

MultiNLI 77.44 74.12 73.98 77.18
RACE 35.52 35.58 31.18 40.72
SQuAD v1.1 60.83 55.78 56.28 59.93
Yelp Polarity 94.14 93.47 93.61 94.18

Training Data Ratio: 0.1%

MultiNLI 66.72 56.78 62.62 68.12
RACE 26.21 26.29 25.82 26.76
SQuAD v1.1 36.59 29.77 30.55 31.89
Yelp Polarity 92.18 88.87 91.81 92.78

Table 2: Average metrics (%) under different training
data ratio. AP refers to Adapter (Houlsby et al., 2019);
BF refers to BitFit (Zaken et al., 2021); LR refers to
LoRA (Hu et al., 2021); FT refers to standard fine-
tuning. The best performed method is shown in bold,
and the worst performed method is underlined.

a development set with validation-matched
and validation-mismatched concatenated.

Several interesting results can be observed from
the table and plots. First of all, almost every delta
tuning method shows a decrease in performance
testing against 4 datasets. Secondly, fine-tuning
(FT) produces the highest scores almost in every
setting except a few. This is consistent with our
preliminary hypothesis since FT adjusts all the pa-
rameters. It’s surprising that adapter tuning (AP)
performs better than FT under a few settings, espe-
cially low data settings of SQuAD. One possible
reason for this phenomenon is that FT has a rela-
tively low convergence speed and it couldn’t reach
its full potential within the given max training steps.
BitFit (BF) and LoRA (LR) show slightly worse
performance compared to FT and AP. The plots
show that either BF or LR is responsible for the



Figure 2: Comparisons of average metrics (%) under different downstream tasks and training data ratio.

lowest score in every setting. However, it’s worth
mentioning that BF is still a parameter-efficient
delta tuning method and it presents enough compe-
tence even with such few parameters to tune.

Figure 3 (placed in the appendix due to page
limit) plots the average metrics on the development
set versus training steps, we compare the conver-
gence speed under different downstream tasks and
training data ratio. According to the results, all the
methods converge quite fast when the training data
ratio is extremely low, and the convergence gets
slower as we increase the training data ratio.

Ranking by the performance: FT ≳ AP > LR
≳ BF; whereas for the convergence speed: FT ≳
AP > LR > BF. Notably, such results are highly
consistent with our hypothesis in Section 3.1.

Additionally, we’ve also tested another delta tun-
ing method called prefix-tuning (PT) (Li and Liang,
2021). However, PT gives unstable performance
on some preliminary experiments, so we discard it
from the main experiments. More details about PT
are discussed in the appendix.

5 Conclusion

This work investigates the performance of three
representative parameter-efficient tuning methods
(Adapter, BitFit, and LoRA) in low-data regimes.
All three methods show competitive results under
limited data, whose performance is comparable to
standard fine-tuning with merely a small portion of
tunable parameters. As a takeaway, we would gen-
erally recommend the Adapter method for its out-
standing performance and fast convergence speed
across various tasks and data ratios. In comparison,
BitFit and LoRA are more memory-friendly (i.e.,
24× and 6× times less tunable parameters com-
pared to the Adapter method) but with a slight drop
on the overall performance.

Ethical Considerations

Parameter-efficient tuning methods aim to reduce
the computation and storage burden of standard
fine-tuning, which reduces the resources for model
tuning. Such methods are environment friendly and
thus should be further promoted to the communities
in both academia and industry.

All these methods (including fine-tuning) essen-
tially do the same job (i.e., adapt a pre-trained
model to some downstream tasks). Though all of
them are proposed to facilitate our lives in various
ways (e.g., grammar checking, auto-filling, etc.),
we still need to be extremely cautious while apply-
ing such methods (e.g., avoid using it for malicious
purpose or causing privacy concerns).
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Figure 3: Comparisons of convergence speed under different downstream tasks and training data ratio.

A Comparisons of Convergence Speed

Figure 3 plots the average metrics on the develop-
ment set versus training steps, where the evaluation
is conducted every 2k steps. In fact, decreasing the
evaluation interval would better reflect the conver-
gence patterns, but we were unable to do so due to
the job time limit on GCP.

B Prefix-tuning (discarded method)

Li and Liang (2021) proposes to prepend a small
continuous task-specific vector (termed prefix) to
the input and hidden states at each Transformer

layer. Moreover, the prefix is reparameterized by a
MLP to stabilize training.

In some preliminary experiments, we found that
prefix-tuning was extremely unstable to train even
with 8 search trials, so we finally discard it.

Method MNLI RACE SQuAD Yelp

FT 87.41 74.09 76.84 96.47
PT 77.13 26.76 29.70 92.57

Table 3: Average metrics (%) under full training data.
FT refers to fine-tuning, PT refers to prefix-tuning.
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