Evaluating Parameter-Efficient Tuning Methods in Low-Data Regimes

Haoming(Hammond) Liu
NYU Shanghai
h13797@nyu.edu

Abstract

Numerous parameter-efficient tuning methods
have been proposed to reduce the computa-
tion and storage burden of standard fine-tuning.
However, these methods are generally evalu-
ated on large-scale benchmarks, which may
not secure their robustness in low-data regimes.
This work further evaluates the effectiveness
and efficiency of several representative meth-
ods when different amounts of training sam-
ples are provided. The experiments have been
conducted on various downstream tasks, which
could provide empirical guidance on the choice
of methods. The code is available at: https:
//github.com/hmdliu/MLLU-S22.

1 Introduction

Pre-trained language models (PLMs) have achieved
great success in processing natural languages. Fine-
tuning, though found effective by some predom-
inant works like BERT (Devlin et al., 2019) and
GPT (Brown et al., 2020), needs to store a model
copy for each downstream task and update all the
parameters for adaption, which is not efficient in
terms of storage and computational resources.

To alleviate this issue, there have been many
works exploring how to adapt PLMs to downstream
tasks effectively and efficiently (Houlsby et al.,
2019; Zaken et al., 2021; Hu et al., 2021; Li and
Liang, 2021; Lester et al., 2021). In general, these
methods tune a small set of adaptive parameters
(inherently in the model or additionally introduced)
instead of the whole PLM - such a paradigm is
termed as delta tuning by Ding et al. (2022).

The evaluation of delta tuning methods are usu-
ally conducted on benchmarks (e.g., GLUE, Super-
GLUE) or datasets (e.g., E2E, XSUM), where the
amount of training samples are generally fixed and
sufficient for the downstream task adaption (Wang
et al., 2018, 2019; Novikova et al., 2017; Narayan
et al., 2018). However, downstream tasks are likely

Xiaochen(Nigel) Lu
NYU Shanghai
x13139%@nyu.edu

Wenbin(Jim) Qi
NYU Shanghai
wg372@nyu.edu

to have limited training data, so the effectiveness
and efficiency of different delta tuning methods
may vary a lot depending on the number of training
samples provided.

To address this potential vulnerability, we set up
a unified testing framework to compare the perfor-
mance and convergence speed of different delta
tuning methods while varying the scale of training
data. The experiments are conducted across various
downstream tasks, including sentiment analysis,
natural language inference, machine reading com-
prehension, and multi-choice question answering.
We hope this work can provide empirical guidance
for method selection.

2 Related Works

This section introduces the categorization of delta
tuning methods and some representative methods
to be evaluated. As Figure 1 illustrates, delta tun-
ing methods can be categorized as addition-based,
specification-based, and reparameterization-based
methods, which are differentiated by the usage of
adaptive parameters (Ding et al., 2022).

0" = JlI!| Addition
O = 1) | Specification
Q= ||u Reparameterization

Figure 1: Illustrations of delta tuning categorization,
where the pre-trained parameter set (O) is mapped to
the well-tuned parameter set (©") with a split of frozen
and tunable parameters. The figure is drawn from Ding
et al. (2022) for demonstration purpose.

| Frozen Parameters Tunable Parameters

(e-mm)—(e-o]

Pre-trained PLM Delta Tuning

2.1 Addition-based Method

Addition-based methods introduce new tunable
modules or some set of trainable parameters to
the original model architecture (Ding et al., 2022).

https://github.com/hmdliu/MLLU-S22
https://github.com/hmdliu/MLLU-S22

Houlsby et al. (2019) proposes to insert small
and tunable Adapter modules between layers of a
pre-trained network. The Adapter module passes
the features through a down-projection, a non-
linearity, and an up-projection to adapt the PLM
representations to downstream tasks.

2.2 Specification-based Method

Specification-based methods select a subset of pa-
rameters from the pre-trained model and make
them trainable while freezing the remaining pa-
rameters in the model (Ding et al., 2022).

Zaken et al. (2021) tunes all the bias terms in the
original PLM, which means the thresholds of non-
linear activation are thus adjusted for downstream
task adaption. Though the bias terms are merely an
extremely small portion, this method still surpris-
ingly well, especially on small-scale models.

2.3 Reparameterization-based Method

Reparameterization-based methods convert the ex-
isting parameters to a parameter-efficient form via
some reparameterization tricks (Ding et al., 2022).

Hu et al. (2021) hypothesizes that the change of
weights during model adaptation has a low intrinsic
rank. Accordingly, we can inject trainable low-rank
decomposition matrices to replace the self-attention
weight matrices. This significantly reduces the
number of trainable parameters and retains perfor-
mance that is comparable to fine-tuning.

3 Method

3.1 Evaluation Methodology

In a recent paper, Ding et al. (2022) conduct a
comprehensive study on different aspects of delta
tuning. We largely adopt their unified testing frame-
work and extend their study in low-data regimes,
which basically investigates the variations of the
performance and efficiency when different portions
of training samples are provided.

Specifically, we sample subsets from each
dataset by a log scale (i.e., 0.1%, 1%, 10%, 100%)
to construct a series of training set for evaluation.
Then we apply the selected delta tuning methods on
these subsets to observe the average metrics and the
speed of convergence, which would demonstrate
the robustness of different methods with limited
data. Notably, the module or structure of each
delta tuning method follows the default settings in
the original paper; the configurations of training

and hyper-parameter search are also unified. More
implementation details are discussed in Section 4.1.

We hypothesize that the performance and con-
vergence speed of a delta tuning method is propor-
tional to the scale of its tunable parameters.

3.2 Pre-trained Language Model

We use T5-Base as the default PLM backbone
for evaluation (Raffel et al., 2020). Moreover, we
use the checkpoints released by Lester et al. (2021),
which conducts an additional 100k steps of LM
adaption. As T5 (Raffel et al., 2020) modulates all
downstream tasks in a text-to-text format and pre-
trains on a span corruption objective, these extra
training steps were shown effective for boosting
performance and convergence speed.

3.3 Dataset

To evaluate the selected delta tuning methods com-
prehensively, we use four large and representative
datasets targeting distinctive downstream tasks.
MultiNLI. Multi-Genre Natural Language Infer-
ence corpus is a crowd-sourced collection of 433k
sentence pairs annotated with textual entailment
information of three categories (i.e., neutral, entail-
ment, or contradiction) (Williams et al., 2018).
RACE. RACE is a reading comprehension dataset
with roughly 28k passages and 100k multiple-
choice questions; the dataset is collected from
English examinations for middle school and high
school students in China (Lai et al., 2017).
SQuAD. Stanford Question Answering Dataset is
a reading comprehension dataset that requires text-
based answers; we use SQuAD v1.1 for this work,
which consists of more than 100k question-answer
pairs on over 500 articles (Rajpurkar et al., 2016).
Yelp Polarity. Yelp Polarity is a sentiment analysis
dataset with a set of 560k highly polarized yelp re-
views for training, and 38k for testing. The dataset
is constructed by Zhang et al. (2015) based on the
Yelp Dataset Challenge 2015 data'.

4 Experiment & Analysis

4.1 Implementation Details

The codebase is implemented based on the Hug-
ging Face library (Lhoest et al.,, 2021). The
sequence-to-sequence trainer is adopted from Ma-
habadi et al. (2021) and the implementation of delta

!The challenge web page is defunct, the Yelp dataset is
now available at: https://www.yelp.com/dataset

https://www.yelp.com/dataset

tuning methods is based on the OpenDelta library
by Ding et al. (2022).

We use the AdamW optimizer (Loshchilov and
Hutter, 2019) and apply a random search with 8
trials to find a fair training setting for each method.
As shown in Table 1, the hyper-parameters includes
learning rate, batch size, and max steps. As RACE
and SQuAD have long inputs, we shrink their batch
size search space and enlarge the max input length
to 512 and 384 respectively (Rajpurkar et al., 2016;
Lai et al., 2017). For MultiNLI and Yelp Polar-
ity, we search the batch size between 16 and 32
and set the max input length to 128 (Zhang et al.,
2015; Williams et al., 2018). To accommodate the
low-data regimes, we apply early stopping with a
patience of 3, and the evaluation is done every 2k
steps (due to the job time limit on GCP).

Hyper-parameter Search Space

Learning Rate
Batch Size
Max Steps

loguniform(le-5, 1e-3)
{4,8} or {16, 32}
{10k, 20k, 40k }

Table 1: Settings for hyper-parameter search.

Following OpenDelta implementation (Ding
et al., 2022), we insert Adapter modules (Houlsby
etal., 2019) with SiLU activations and a bottleneck
dimension of 64; for BitFit (Zaken et al., 2021), we
tunes all the bias terms by default; for LoRA (Hu
et al., 2021), we use decompositions of rank 4 to
reparameterize the attention module method.

4.2 Results & Analysis

We report the average metrics (%) under different
downstream tasks and training data ratio in Table
2 and visualize the results in Figure 2. We use the
exact match and F-1 scores for SQuUAD and a single
accuracy metric for the others.

Besides, some experiment details regarding the
datasets are addressed as follows: 1) SQuUAD has
closed the test server for v1.1, so we evenly split the
original development set as our new development
and test set before all the experiments; 2) Yelp
Polarity doesn’t have a public development set, so
we randomly chop off 38,000 samples from the
training set for validation purpose, which has the
same size as the public test set; 3) For MultiNLI,
we were unable to evaluate our models on the test
server for time reason, so the average metrics we
reported in Table 2 are the accuracy evaluated on

Dataset AP BF LR FT
Tunable Ratio 2.38% 0.10% 0.38% 100%
Training Data Ratio: 100%

MultiNLI 87.18 84.34 84.81 8741
RACE 70.35 62.12 69.14 74.09
SQuADv1.1 7593 73775 7485 76.84
Yelp Polarity 96.27 95.82 9599 96.47
Training Data Ratio: 10%
MultiNLI 83.11 81.04 80.65 82.55
RACE 54.68 52.12 5353 57.15
SQuADv1.1 70.79 6797 68.77 70.48
Yelp Polarity 95.40 95.08 94.87 95.37
Training Data Ratio: 1%
MultiNLI 77.44 74.12 7398 77.18
RACE 35.52 3558 31.18 40.72
SQuADv1.1 60.83 55.78 56.28 59.93
Yelp Polarity 94.14 93.47 93.61 94.18
Training Data Ratio: 0.1%
MultiNLI 66.72 56.78 62.62 68.12
RACE 26.21 2629 25.82 26.76
SQuADvl.l 36.59 29.77 30.55 31.89
Yelp Polarity ~ 92.18 88.87 91.81 92.78

Table 2: Average metrics (%) under different training
data ratio. AP refers to Adapter (Houlsby et al., 2019);
BF refers to BitFit (Zaken et al., 2021); LR refers to
LoRA (Hu et al., 2021); FT refers to standard fine-
tuning. The best performed method is shown in bold,
and the worst performed method is underlined.

a development set with validation-matched
and validation-mismatched concatenated.

Several interesting results can be observed from
the table and plots. First of all, almost every delta
tuning method shows a decrease in performance
testing against 4 datasets. Secondly, fine-tuning
(FT) produces the highest scores almost in every
setting except a few. This is consistent with our
preliminary hypothesis since FT adjusts all the pa-
rameters. It’s surprising that adapter tuning (AP)
performs better than FT under a few settings, espe-
cially low data settings of SQuAD. One possible
reason for this phenomenon is that FT has a rela-
tively low convergence speed and it couldn’t reach
its full potential within the given max training steps.
BitFit (BF) and LoRA (LR) show slightly worse
performance compared to FT and AP. The plots
show that either BF or LR is responsible for the

Dataset = MNLI Dataset = RACE

—e— None = —e— None
85 Adapter

i 70 Adapter
—— BitFit //// —— BifFit
g0 —— LoRA A —— LoRA
S 60
y
75 |

Average Metrics

40

01% 1% 10% 100% 0.1% 1% 10% 100%

Data Ratio Data Ratio

Dataset = SQUAD

—e— None

Dataset = Yelp
—e— None
Adapter
70 —— BitFit

/ % Adapter /
= .
= —— BifFit =
T A
—— LoRA / —— LoRA p
g =
- .
/.
/

I
92 | /
91 /

0 /

89 /

0.1% 1% 10% 100% 0.1% 1% 10% 100%
Data Ratio Data Ratio

Figure 2: Comparisons of average metrics (%) under different downstream tasks and training data ratio.

lowest score in every setting. However, it’s worth
mentioning that BF is still a parameter-efficient
delta tuning method and it presents enough compe-
tence even with such few parameters to tune.

Figure 3 (placed in the appendix due to page
limit) plots the average metrics on the development
set versus training steps, we compare the conver-
gence speed under different downstream tasks and
training data ratio. According to the results, all the
methods converge quite fast when the training data
ratio is extremely low, and the convergence gets
slower as we increase the training data ratio.

Ranking by the performance: FT 2 AP > LR
2 BF; whereas for the convergence speed: FT 2
AP > LR > BF. Notably, such results are highly
consistent with our hypothesis in Section 3.1.

Additionally, we’ve also tested another delta tun-
ing method called prefix-tuning (PT) (Li and Liang,
2021). However, PT gives unstable performance
on some preliminary experiments, so we discard it
from the main experiments. More details about PT
are discussed in the appendix.

5 Conclusion

This work investigates the performance of three
representative parameter-efficient tuning methods
(Adapter, BitFit, and LoRA) in low-data regimes.
All three methods show competitive results under
limited data, whose performance is comparable to
standard fine-tuning with merely a small portion of
tunable parameters. As a takeaway, we would gen-
erally recommend the Adapter method for its out-
standing performance and fast convergence speed
across various tasks and data ratios. In comparison,
BitFit and LoRA are more memory-friendly (i.e.,
24x and 6x times less tunable parameters com-
pared to the Adapter method) but with a slight drop
on the overall performance.

Ethical Considerations

Parameter-efficient tuning methods aim to reduce
the computation and storage burden of standard
fine-tuning, which reduces the resources for model
tuning. Such methods are environment friendly and
thus should be further promoted to the communities
in both academia and industry.

All these methods (including fine-tuning) essen-
tially do the same job (i.e., adapt a pre-trained
model to some downstream tasks). Though all of
them are proposed to facilitate our lives in various
ways (e.g., grammar checking, auto-filling, etc.),
we still need to be extremely cautious while apply-
ing such methods (e.g., avoid using it for malicious
purpose or causing privacy concerns).

Collaboration Statement

All group members attended the regular project
meetings, completed the literature review, ran the
experiments, and wrote up the final report together.
Additionally, Hammond set up the codebase for
evaluation; Jim analyzed the experiment results;
Nigel visualized the experiment results. All the
experiments were conducted on NYU HPC (GCP).
This work is supervised by Professor Samuel R.
Bowman, Arka Talukdar, and Eugene Choi during
the DS-UA 203: Machine Learning for Language
Understanding course (Spring 2022).

Acknowledgements

We thank Jason Phang for advising on this work
and Shenglong Wang for the help on HPC usage.

Dataset = mnli | Data-ratio = 0.001 Dataset = mnli | Data-ratio = 0.01 Dataset = mnli | Data-ratio = 0.1 Dataset = mnli | Data-ratio = 1.0

675 Lr=mm— 1 ./' | 83 ° — Agapler v - e
////// o | —— Bitfit P =
w0 e PR p——— e 86 /‘/_,.\ / = \./
/-/ 82 / —— Fine-tuning L Y j
......... - L / |
o 825 ° 76 84 ? / =
8 8 . el
S oo —° Adapter s s
= —=— Bitfit 7 - P
) o5 Lo 75 / /
% —+— Fine-tuning B 80 \ [
20 8 I/
74 — 79 - [
/-/ —e— Adapter I —e— Adapter
525 —e— Bitfit 78 —— Bitfit
—=— Lora 78 / —=— Lora
50.0 o 3y —+— Fine-tuning —+— Fine-tuning
76
5000 10000 15000 20000 25000 5000 10000 15000 20000 2000 4000 6000 8000 10000 10000 20000 30000 40000
Dataset = race | Data-ratio = 0.001 Dataset = race | Data-ratio = 0.01 Dataset = race | Data-ratio = 0.1 Dataset = race | Data-ratio = 1.0
26.8 T L 4 75 —
/ L —
S ——
2.6 t 0 55 / 70
26.4 ./
28 | 65
822 o 50
g 60
26.0
o 36
T 55
S8 = 45
z
256 34 50 |
—e— Adapter —e— Adapter 2 —e— Adapter —e— Adapter
254 Bitfit Bitfit Bitfit 45 : Bitfit
—=— Lora 32 —=— Lora —=— Lora —=— Lora
252 —+— Fine-tuning & —+— Fine-tuning 4 —+— Fine-tuning 40 . —+— Fine-tuning
2000 3000 4000 5000 6000 2000 4000 6000 8000 2000 4000 6000 8000 10000 12000 10000 20000 30000 40000
Dataset = squad | Data-ratio = 0.001 Dataset = squad | Data-ratio = 0.01 Dataset = squad | Data-ratio = 0.1 Dataset = squad | Data-ratio = 1.0
6 7
—e— Adapter —e— Adapter p —e— Adapter
36 Bitfit / Bitfit i Bitfit 76 N
—=— Lora 60 T —— Lora 70— —=— Lora -{.
35 —— Fine-tuning / —+— Fine-tuning —— Fine-tuning 74 i
59 ¢
= 69 —
g S T 72
T P
233 58 68 -
= - 70 i
8 32 '
o p— P
= | 5 67 * /I
2. - B 68 //
B 56 e
o S 66 66 ° Comibar
T . . g —e— Bitfit
55 ~
29 —— Lora
/ 65 64
p —+— Fine-tuning
2000 4000 6000 8000 10000 5000 10000 15000 20000 2000 4000 6000 8000 10000 12000 10000 20000 30000 40000
Dataset = yelp | Data-ratio = 0.001 Dataset = yelp | Data-ratio = 0.01 Dataset = yelp | Data-ratio = 0.1 Dataset = yelp | Data-ratio = 1.0
942
& ¥ -3 —e— Adapter
")
92.5 —" 95.25 —=— Bitfit
. ——— P —=— Lora
92.0 95.00 / —+— Fine-tuning
T 94.0 \ / - . o
915 A 2 %4.75 - _,,/‘-/\ — o L/
8 R IS — F
£ 93.9 / /
= 91.0 94.50 f
)
93.8
g 05 %4.25 / %
g /
<900 937 94.00 //
895 —e— Adapter w6 * —e— Adapter 075 / 3 —e— Adapter
Bitfit Bitfit / | Bitfit
89.0 —=— Lora 05 —=— Lora 93.50 / | —=— Lora
————n —+— Fine-tuning —+— Fine-tuning ! —+— Fine-tuning
92
5000 10000 15000 20000 2000 4000 6000 8000 10000 12000 5000 10000 15000 10000 20000 30000 40000
Steps Steps Steps Steps

Figure 3: Comparisons of convergence speed under different downstream tasks and training data ratio.

A Comparisons of Convergence Speed layer. Moreover, the prefix is reparameterized by a
MLP to stabilize training.

In some preliminary experiments, we found that
prefix-tuning was extremely unstable to train even
with 8 search trials, so we finally discard it.

Figure 3 plots the average metrics on the develop-
ment set versus training steps, where the evaluation
is conducted every 2k steps. In fact, decreasing the
evaluation interval would better reflect the conver-

gence patterns, but we were unable to do so due to
the job time limit on GCP. Method MNLI RACE SQuAD Yelp

FT 87.41 74.09 76.84 96.47
PT 77.13 26.76 29.70 92.57

B Prefix-tuning (discarded method)

Li and Liang (2021) proposes to prepend a small
continuous task-specific vector (termed prefix) to ~ Table 3: Average metrics (%) under full training data.
the input and hidden states at each Transformer ~ FT refers to fine-tuning, PT refers to prefix-tuning.

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao,
Xiaozhi Wang, Zhiyuan Liu, Hai-Tao Zheng, Jianfei
Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong
Sun. 2022. Delta tuning: A comprehensive study of
parameter efficient methods for pre-trained language
models.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 2790-2799.
PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. ArXiv preprint,
abs/2106.09685.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. RACE: Large-scale ReAd-
ing comprehension dataset from examinations. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 785—
794, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. ArXiv preprint, abs/2104.08691.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien
Plu, Lewis Tunstall, Joe Davison, Mario Sasko,
Gunjan Chhablani, Bhavitvya Malik, Simon Bran-
deis, Teven Le Scao, Victor Sanh, Canwen Xu,
Nicolas Patry, Angelina McMillan-Major, Philipp
Schmid, Sylvain Gugger, Clément Delangue, Théo
Matussiere, Lysandre Debut, Stas Bekman, Pierric

Cistac, Thibault Goehringer, Victor Mustar, Francois
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175—184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Rabeeh Karimi Mahabadi, James Henderson, and Se-
bastian Ruder. 2021. Compacter: Efficient low-
rank hypercomplex adapter layers. ArXiv preprint,
abs/2106.04647.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797-1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Jekaterina Novikova, Ondrej Dusek, and Verena Rieser.
2017. The E2E dataset: New challenges for end-
to-end generation. In Proceedings of the 18th An-
nual SIGdial Meeting on Discourse and Dialogue,
pages 201-206, Saarbriicken, Germany. Association
for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/ARXIV.2203.06904
https://doi.org/10.48550/ARXIV.2203.06904
https://doi.org/10.48550/ARXIV.2203.06904
http://proceedings.mlr.press/v97/houlsby19a.html
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.18653/v1/D17-1082
https://doi.org/10.18653/v1/D17-1082
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2106.04647
https://arxiv.org/abs/2106.04647
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/W17-5525
https://doi.org/10.18653/v1/W17-5525
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://arxiv.org/abs/1905.00537
https://doi.org/10.18653/v1/W18-5446

A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353-355, Brussels, Belgium. Association for Com-
putational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112—-1122. Association for
Computational Linguistics.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. ArXiv preprint, abs/2106.10199.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199
https://papers.nips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html
https://papers.nips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html

