Self-supervised Pre-training for Object Detection

Haoming(Hammond) Liu Wenbin(Jim) Qi Haorui(Harry) Lee
NYU Shanghai NYU Shanghai NYU Shanghai
h13797@nyu.edu wq372@nyu.edu h13794@nyu.edu
Abstract

This work pre-trains a Vision Transformer (ViT) in a Masked Autoencoder (MAE)
manner and uses it for object detection. In the fine-tuning stage, we adopt the
plain feature pyramid network (FPN) from ViTDet and a standard Faster R-CNN
detection head. With strong pre-trained features and effective fine-tuning tricks,
our model finally achieves 30.3% mAP on the test set (team rank 3).

1 Introduction

Along with the boom of deep learning, new model architectures and training paradigms are constantly
being proposed and updated. With the help of powerful hardware devices, we are now able to pre-train
our models with a huge amount of unlabeled data to boost the performance on various downstream
tasks. Following the competition guidelines, the goal of this work is to boost the performance of
object detection via self-supervised pre-training.

Specifically, 512,000 unlabeled images of size 224 x 224 are provided for pre-training; whereas 50,000
labeled images of different sizes are used for the adaption of object detection (train:val=3:2),
where the bounding boxes consist of objects from 100 classes. The final model will be evaluated on a
hidden test set with 10,000 labeled images (drawn from the same data distribution).

Convolutional Neural Network [5] has achieved great success in the past decade. As one of the most
popular CNN-based architectures, ResNets [2] were almost the default backbone while evaluating
pre-training methods. Until recently, Vision Transformers (ViT) [1]] start to demonstrate its power.
Accordingly, ViT-based pre-training methods like Masked Autoencoder (MAE) [3]] were proposed to
explore the potential of this new architecture. Following the recent work by Li et al. [6]], we aim to
investigate the performance of ViT models as a backbone network for object detection.

2 Related Works

Autoencoding. Autoencoding [4] is a classical method for learning representations. The encoder
maps an input to some latent representation, whereas the decoder is used to reconstruct the input. For
example, Denoising Autoencoders (DAE) [8] is a class of methods that corrupt the input signal and
tries to reconstruct the uncorrupted signal. The Masked Autoencoder (MAE) [3] method we used in
this work is a special form of DAE, where the random masking is introduced as the noise.

Object Detection. Object detection aims to find the bounding boxes for the objects in a given
image. Faster R-CNN [7] is a classical 2-stage detection method, which is generally used as a default
detection head while evaluating the performance of different pre-training methods.

3 Method

Pre-training. We adopt the Masked Autoencoder (MAE) proposed by He et al. [3] to perform the
pre-training on the unlabeled data. We use a standard ViT-Base [1]] model with a patch size of 16.

GitHub Repository: https://github.com/hmdliu/DL-SP22-Team2

https://github.com/hmdliu/DL-SP22-Team2

AN

e

EENENT
!

! l -
d Re Feature Map

Original Masked Reconstructe econstructed + Visible

(a) MAE architecture (figure from He et al. [3]]). (b) Reconstruction results on unlabeled data.

Figure 1: Illustrations of the Masked Autoencoder (MAE).

During pre-training, we mask off most input patches (around 75%) and feed the remaining ones
into the encoder, which produces some latent representations; then, we use a lightweight decoder
to reconstruct the original image. Visual illustrations of MAE are provided in Figure[Tal After the
pre-training stage, we can drop the decoder and use the encoder as a backbone network.

We largely adopt the code and training configurations from the official GitHub repositoryﬂ Our
ViT-B/16 model uses a mask ratio of 75% while pre-training on unlabeled data. We use the AdamW
optimizer (betas=0.9,0.95) with a weight decay of 0.05. Our base learning rate is 1.5e-4 with a
cosine scheduler. We set the per device batch size to 64 and train on 4 Tesla V100 GPUs. Our effective
batch size is 512 (accumulation iteration = 2), which mimics a single node in the original training
setting [3]. We adopt a standard data augmentation (random resized crop & random horizontal flip)
and warm up the learning rate in the first 20 epochs. Figure [Tb|shows the reconstruction results after
pre-training for 80 epochs. Overall, our MAE model gives reasonable reconstructions for the masked
inputs. Besides, we also plot the feature maps for the uncorrupted inputs, where some patterns of the
objects, though a bit coarse, are still shown in the single-scaled ViT feature maps (stride = 16).

Fine-tuning. To adapt the pre-trained backbone network to the detection task, we interpolate the
positional embeddings and transform all inputs to 512 x 512 to ensure the consistency of input
sizes. For a fair evaluation, we only use a standard Faster R-CNN [[7]] detection head with a slight
modification on the Feature Pyramid Network (FPN).

Different from CNN-based architectures, ViT-based models have single-scaled feature maps, where
the stride is in proportion to the patch size. In a recent paper, Li et al. [6] empirically found that it’s
already sufficient to generate the feature pyramid with the last feature map (instead of an aggregation
of all stages), where each layer is produced by up-sampling (transpose convolution) or down-sampling
(max pooling). A possible reason is that ViT models can reply on positional embeddings to encode
spatial information, and moreover, its feature extraction procedure won’t lead to a information loss
in later stages (e.g., shrinking size via max pooling). In our case, the output feature map is of size
32 x 32 x 768, then we introduce four extra layers and construct the feature pyramid of sizes [128,
64, 32, 16, 8]. We adopt the default anchor generator for Faster R-CNN (sizes = [32, 64, 128, 512],
aspect ratios = [0.5, 1.0, 2.0]) for detection. The feature pyramid is visualized in Figure@ where the
object regions activate nicely after up- or down-sampling the raw output.

We fine-tune the pre-trained backbone network on a single GPU with a batch size of 2. We use
AdamW optimizer (betas=0.9,0.999) with a weight decay of 0.01. The base learning rate is set to
1e-4 with 8000 steps of warm-up and it decays by a factor of 0.1 every 10 epochs. We apply random
horizontal flip as the standard data augmentation. More experimental attempts are discussed and
evaluated in Section] including color jitter, backbone freezing, and per-layer decayed learning rate.

4 Experiment

In this section, we investigate the performance of different configurations of learning rate and data
augmentation and perform the experiments in an iterative manner (i.e., resuming from the best
checkpoints in the previous stage). We report the mAP, AP50, and AP75 metrics in Tabel[T]

'https://github.com/facebookresearch/mae

https://github.com/facebookresearch/mae

Method mAP APS0 AP7S Method mAP APS50 AP75

Stage 1 (15 epochs) Stage 2 (15 epochs)

(A) No Pre-training 6.5 14.3 4.9 B)—(E) 288 46.5 30.8
(B) Freeze 16.3 31.0 15.3 B)—F 294 46.6 31.7
(C) Freeze + Color Jitter 134 25.7 124 O —-F 287 45.9 30.9
(D) Unified Ir 232 375 247 (E)—(E) 290 449 31.1
(E) Decay Ir 259 419 27.6 (E)—F 301 46.6 329
(F) Decay Ir + Color Jitter 24.0 39.0 259 F—F 295 457 321

Table 1: Average Precision metrics (%). The best method is in bold, top 3 methods are underlined.
"(A) — (B)" means resuming from (A)’s best checkpoint in Stage 1 and continue training using (B).

To start with, we investigate the effect of MAE pre-trained features. As shown in the left sub-table,
there is a clear gap between the non-pretraining one and any of the others, which demonstrates that
the pre-training on unlabeled data has successfully boosted the performance on downstream tasks.

We divide fine-tuning into two stages to allow more flexibility of comparisons. Overall, the results of
our attempts can be summarized as follows:

Per-layer decayed learning rate (backbone). As shown in the left sub-table, applying a per-layer
decayed learning rate in the backbone gives a 2.7% mAP increment. Such a trick stabilizes the
pre-trained representations in the backbone and thus ensures a better performance.

Color Jitter. Following Li et al. [6], we introduce a strong color jitter (brightness, contrast, saturation
=[0.1, 2.0]; hue = [-0.1, 0.1]) in some of the experiments, which doesn’t change the position of
bounding boxes but produces nice variants of the input. According to the results, applying color jitter
doesn’t improve the performance in the first stage, which suggests it’s generally no good to increase
the variance of data distribution in the early fine-tuning stage (since the task-specific heads are not
"fully working" yet). In comparison, applying color jitter in the second stage usually gives a better
performance, and moreover, this potentially allows us to train for more epochs before overfitting.

Backbone Freezing. We also tried to freeze the backbone in the first stage to warm up the detection
head (and then use decay Ir + color jitter for the second stage), which gives outstanding performance
in an early experiment. However, we were unable to reproduce it in later experiments. Apart from
this pity, one solid advantage of the freezing trick is its training speed, which is the fastest among all
experiment settings (since we don’t need to tune the backbone at all).

Summing up all the effective tricks, the best fine-tuning setting according to Table[T]is to repeat
method (F) interatively. As we haven’t completed all these ablation studies by the deadline of the last
leaderboard, our best attempt on the public leaderboard is conducted in "(B) — (F) — (F) — (F)"
manner, which achieves 32.0% mAP on the validation set and 30.3% mAP on the test set. Notably,
with the help of robust pre-trained features and strong data augmentation, we still didn’t observe any
sign of convergence even though we’ve resumed from the previous best checkpoints 3 times.

Up-sampled (64 * 64) Down-sampled (16 * 16)

(a) Feature pyramid outputs. (b) Detection results.

Figure 2: Object Detection Visualizations.

5 Discussion

Some detection results on the validation set are plotted in Figure [2b] where the success and failure
cases are shown in the first and the second row respectively. Overall, our model is able to predict the
bounding boxes for most of the salient objects well but sometimes fails in determining the object
class (e.g., classify an old man as a bear, treat a fence as a computer keyboard, etc.).

Besides, we adopt the default anchor generator from Faster R-CNN [7], which was primarily designed
for images of larger sizes. As most labeled objects are relatively large, we decide to use such a setting
to prioritize larger objects, which inevitably degrades the model’s ability to detect smaller objects
(e.g., failed to detect the dog in the upper right image). However, such a trade-off choice still works
as we’ve achieved the highest AP50 and the third-highest mAP among all the groups.

6 Conclusion

This work validates the effectiveness of MAE [3]] pre-training for ViT [1]] backbone networks, where
the model can reconstruct the corrupted images by the residual semantic information. With the help
of ViTDet (6] feature pyramid network and some effective fine-tuning tricks (e.g., per-layer decayed
learning rate, color jitter, iterative training, etc.), our model performs reasonably well on the given
object detection dataset. As a last note, we may potentially get even better performance if we enlarge
the number of epochs for both pre-training and fine-tuning.

Acknowledgements. We thank Prof. Yann LeCun, Prof. Alfredo Canziani, and Jiachen Zhu for the
amazing lectures and guidance throughout the course.

References

[1] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=YicbFdNTTy,

[2] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770-778, 2016.

[3] K. He, X. Chen, S. Xie, Y. Li, P. Dollar, and R. Girshick. Masked autoencoders are scalable
vision learners, 2021. URL https://arxiv.org/abs/2111.06377,

[4] G.E.Hinton and R. Zemel. Autoencoders, minimum description length and helmholtz free energy.
In J. Cowan, G. Tesauro, and J. Alspector, editors, Advances in Neural Information Processing
Systems, volume 6. Morgan-Kaufmann, 1993. URL https://proceedings.neurips.cc/
paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper. pdfl

[5] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4):541—
551, 1989. doi: 10.1162/neco.1989.1.4.541.

[6] Y.Li, H. Mao, R. Girshick, and K. He. Exploring plain vision transformer backbones for object
detection, 2022. URL https://arxiv.org/abs/2203.16527,

[7] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28. Cur-
ran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper/2015/file/
14bfa6bb14875e45bba028a21ed38046-Paper . pdfl

[8] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust
features with denoising autoencoders. In Proceedings of the 25th international conference on
Machine learning, pages 1096—1103, 2008.

https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/2111.06377
https://proceedings.neurips.cc/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/9e3cfc48eccf81a0d57663e129aef3cb-Paper.pdf
https://arxiv.org/abs/2203.16527
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

	Introduction
	Related Works
	Method
	Experiment
	Discussion
	Conclusion

