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Preface

Deep learning models are rapidly expanding in size, thus requiring more data
for training. This raises some concerns about the adequacy of the data since
the annotated samples can be extremely limited on some downstream tasks.
This work tackles a classic computer vision task in low-data regimes, few-shot
segmentation (FSS), aiming to improve the baseline performance and general-
ization ability of FSS models. We believe this work is highly informative and
insightful for those who are interested in data-efficient learning, as the plug-
and-play techniques introduced in this work are applicable to most relevant
tasks in the field of computer vision, or deep learning in general.
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Abstract

Few-shot segmentation (FSS) aims to train a segmentation model that can
quickly adapt to a novel task given only a few annotated samples. It tack-
les the lack of annotated data for rare classes and improves the generaliza-
tion ability of deep CNN based segmentation models. Adopting the transfer
learning paradigm, this work produces a strong FSS baseline by incorporat-
ing contrastive learning components to obtain more discriminative feature em-
beddings. On top of that, we further expand this work into generalized few-
shot segmentation (GFSS) and introduce two background modeling techniques.
Specifically, we reformulate the per-pixel cross-entropy loss in the context of
GFSS and further introduce a distillation loss to alleviate the catastrophic
forgetting of existing knowledge. The proposed methods demonstrate signifi-
cant performance gains on PASCAL-5i and COCO-20i benchmarks and are
portable to most data-efficient learning tasks. The code is publicly available
at: https: // github. com/ hmdliu/ GFSS-Capstone .
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1 Introduction

Semantic segmentation refers to the task of predicting the class label for each pixel in the image.

It is a fundamental task in scene understanding and has various real-world applications, such as

remote sensing and autonomous vehicles. Along with the boom of deep learning, many deep CNN

based segmentation models have achieved great performance on a set of pre-defined categories with

sufficient human-annotated labels (e.g., PASCAL VOC, MS-COCO) [1, 2]. However, such training

paradigms are still far from satisfactory since the training samples for some categories may not be

abundant in practice. Accordingly, the task of few-shot segmentation (FSS) is proposed, which

aims to predict the region mask of an unseen class based on a few annotations. It accommodates

the lack of annotations on some downstream tasks and improves the generalization ability of

segmentation models in low-data regimes.

Figure 1 gives an overall illustration of few-shot segmentation: FSS models are first trained on

the data-abundant base classes and then tested on the data-scarce novel classes. The two dom-

inant paradigms for FSS are meta learning and transfer learning, with the latter being adopted

by most recent works due to its simplicity and superior performance [3, 4]. More concretely, the

transfer learning paradigm aims to learn generic feature embeddings through training on sufficient

base images. On top of that, only the classifier needs to be fine-tuned while adapting to a novel

class. In this work, we term these two stages as pre-training and fine-tuning, respectively.

Figure 1: Few-shot Segmentation & Generalized Few-shot Segmentation Overview.

As most transfer learning based methods tend to make improvements in the fine-tuning stage,

we wish to explore more possibilities in the pre-training stage. Contrastive learning is a common

approach to producing more discriminative features, and it has demonstrated its power through

its tremendous success in self-supervised learning. Inspired by a few recent works that incorporate

contrastive learning into semantic segmentation [5, 6], we introduce a pixel-wise contrastive loss

to the pre-training stage of FSS to improve the generalization ability of feature embeddings.

5



In addition, we observe that the conventional evaluation scheme for FSS is deficient in that the

base class performance is generally disregarded, whereas the schemes for few-shot object detection

usually perform evaluations on both novel and base classes [7, 8]. Due to the need of reserving

base class knowledge after adapting to novel classes in some real-world scenarios, we extend our

target task to generalized few-shot segmentation (GFSS) to ensure the comprehensiveness of the

evaluation. However, this introduces the problem of background shift as pre-training stage and

fine-tuning stage have different label spaces (i.e., base classes will be labeled as background in the

ground truth in the fine-tuning stage of GFSS). To cope with this issue, we reformulate the per-

pixel cross-entropy loss in the context of GFSS. Furthermore, we borrow ideas from the literature

on incremental learning and devise a distillation loss to preserve the base class knowledge learned

in the pre-training stage while adapting to a new task.

To sum up, the main contribution of this work can be summarized as follows:

• We propose to incorporate contrastive learning into the pre-training stage of FSS to gain

more discriminative embeddings for the novel class adaptation.

• We expand our work into GFSS by reformulating the conventional per-pixel cross-entropy

loss to tackle the background shift. Furthermore, we introduce a distillation loss to mitigate

the catastrophic forgetting of the base class knowledge.

• We validate the effectiveness of the proposed methods through extensive experiments on

the PASCAL-5i and COCO-20i benchmarks and discuss their other potential usage.

2 Related Work

2.1 Semantic Segmentation

Semantic segmentation is a dense prediction task that classifies each pixel of an image into

a set of pre-defined semantic categories. Since the introduction of FCN [9], most semantic seg-

mentation works have defaulted to fully convolutional architectures. PSPNet [10] incorporates

spatial pyramid pooling to aggregate semantic information at different granularities. Deeplab

[11] explores a dilated sampling strategy and proposes atrous spatial pyramid pooling (ASPP),

which enlarges the receptive field and preserves the resolution of feature maps. Considering the

promising performance PSPNet demonstrated in FSS [12, 13, 14], we adopt it as our backbone.
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2.2 Few-shot Segmentation

Few-shot segmentation (FSS) aims to achieve effective knowledge transfer from the data-

abundant base classes to the data-scarce novel classes. The works in this field can be divided

into two paradigms: meta learning and transfer learning. Meta learning aims to extract task-

level, class-agnostic meta knowledge for the model to quickly adapt to new tasks with very few

annotated support examples. OSLSM [15] pioneered the field utilizing a conditioning branch to

generate the classifier weights for query branch prediction. CANet [16] applies masked global

average pooling on support images to generate prototypes and densely compare between the pro-

totype and the novel query features. PFENet [13] achieves a competitive performance through a

multi-scale aggregation module that refines the query feature with the support features and their

generated priors. Transfer learning based approaches assume that the feature representations

learned from the base classes are already generalizable, so instead of meta-training the feature

extractor, they freeze the feature extractor pre-trained on base classes and focus on fine-tuning

the classification layer for adaptation to new tasks. RePRI [14] introduces Shannon entropy and

KL divergence to the loss functions and uses transductive inference. CWT [12] adds a transformer

block to adaptively refine the classifier weights. Our work adopts a similar transfer learning based

training scheme for FSS but focus more on learning stronger embeddings in the pre-training stage.

2.3 Contrastive Learning

Contrastive learning is a popular approach for representation learning, where the model learns

in a discriminative manner by contrasting similar (positive) sample pairs against dissimilar (nega-

tive) sample pairs. In the context of computer vision, contrast is typically performed image-wise.

The positive samples are generally multiple views of the same image obtained through applying

strong perturbations [17], whereas the negative samples are usually sampled randomly [18]. Re-

markably, contrastive learning is now a dominant branch of self-supervised learning, thanks to

the great works such as SimCLR [19], MoCo [20] and DINO [21].

A few recent works in semantic segmentation have integrated contrastive learning into standard

supervised training and achieved better performance. [5] proposes a pixel-wise contrastive learn-

ing paradigm across images and develops a region memory to enlarge the visual data space. [6]

investigates and compares three variants of pixel-wise, label-based contrastive losses with sizable

performance improvement. Inspired by these works, we formulate a simple but effective pixel-wise

contrastive loss and tailor a sampling strategy for FSS pre-training.
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2.4 Generalized Few-shot Segmentation

The goal of generalized few-shot segmentation (GFSS) is to train an FSS model that is able to

give promising segmentation masks on both novel and base classes, which is more practical in real-

world applications. [22] first introduces this task and proposes a prototype learning based method

that yields significant performance gains over both the FSS and GFSS baselines. ABPNet [23]

identifies the problem of background shift and meta-learns two modules for background modeling

and prototype querying to address the problem. [24] explores a simple transfer learning baseline

and formulates an augmented triplet loss for the fine-tuning stage. To the best of our knowledge,

our work is the first transfer learning based approach that tackles the background shift problem.

3 Methodology

3.1 Problem Formulation

We follow the conventional FSS training scheme [15] and further expand it into GFSS. Formally,

we are given two datasets Dbase and Dnovel with category sets Cbase and Cnovel respectively, where

Cbase ∩ Cnovel = ∅. Our objective is to learn a generalizable segmentation model through training

on the base dataset Dbase with sufficient annotated samples such that the model performs well

on some unseen classes (drawn from Cnovel) with limited training samples (drawn from Dnovel).

In general, FSS tasks are generated in an episodic manner. Specifically, we sample a series of

episodes from Dbase and Dnovel to simulate the few-shot scenario. Under a K-shot setting, each

episode is composed of a small support set S = {(xsk,ms
k)}Kk=1 and a query set Q = {(xq,mq)},

where x� and m� represent a raw image and its corresponding binary mask for some class c. While

evaluating the model, we randomly sample a class c from category set Ctest and test the model

on an episode of this class, where Ctest = Cnovel for FSS and Ctest = Cnovel ∪ Cbase for GFSS.

3.2 Overall Framework

A semantic segmentation model are typically a fully convolutional network (FCN), consisting

of an encoder, a decoder, and a simple classifier. The encoder gradually reduces the feature map

resolution and captures higher semantic information; then, the decoder aggregates features from

different stages and recover the spatial information. For simplicity, we denote the segmentation

backbone (i.e., the encoder and the decoder) as fθ. Then given an input image x, we can produce

a dense feature I = fθ(x) ∈ RH×W×D, where H and W are the feature resolution and D is
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the embedding dimension. To make predictions, we use a per-pixel classifier gψ to compute the

softmax normalized segmentation mask m̂ = gψ(I) ∈ RH×W×|C| for each semantic class c ∈ C,

where C is a category set for some pre-defined classes.

In the context of FSS, transfer learning based approaches tend to follow a two-stage training

scheme of pre-training and fine-tuning. In the pre-training stage, we train the feature extraction

network (i.e., the encoder and the decoder) on the whole base dataset Cbase. Following previous

works [12, 14], we use PSPNet [10] as the segmentation backbone and adopts a standard cross-

entropy loss. In the fine-tuning stage, we freeze the backbone and train a new classifier with

the support set S to adapt to a new class. Hence, we can make predictions on the query set Q.

Notably, the new classifier is 2-way (i.e., the novel and background class) for FSS and (|Cbase|+2)-

way (i.e., the novel and background class, along with all base classes) for GFSS. More details

about our training configurations are discussed in Section 4.2.

Figure 2 illustrates the model architectures and workflow we adopt for both FSS and GFSS.

Section 3.3 presents the pixel-wise contrastive loss we devise for representation learning. Section

3.4 discusses how we reformulate the per-pixel cross-entropy loss and tackle the problem of back-

ground shift after extending to GFSS. Section 3.5 elaborates on the distillation-based regularizer

we introduce to preserve the base class knowledge during new task adaptation.

Figure 2: Model architectures for pre-training stage (left) and fine-tuning stage (right).

3.3 FSS: Contrastive Segmentation Pre-training

Pixel-wise Cross-Entropy Loss. Let ŷi ∈ R|C| be the predicted probability distribution for

pixel i, where ŷi is drawn from the softmax normalized segmentation mask m̂. Then, the pixel-

wise cross-entropy loss is defined as:

LCE
i = − log qx(i, yi), (1)
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where yi is the ground truth label for pixel i and qx(i, c) = ŷi[c]. As noted by [5], this training

objective suffers from two potential limitations: 1) it penalizes pixel-wise predictions indepen-

dently but fails to model the correlations between pixels; 2) due to the entailed softmax function

in Eq.1, the supervision on the feature representations is indirect since the loss only depends on

the relative relation between logits. Accordingly, introducing a pixel-wise contrastive loss is an

effective way of tackling both limitations, as it models pixel-to-pixel relations and provides direct

supervision on the feature representations.

Pixel-to-Pixel Contrastive Loss. Inspired by recent semantic segmentation works that incor-

porates contrastive learning into standard supervised training [5, 6], we introduce a pixel-to-pixel

contrastive loss to complement the pixel-wise corss-entropy loss and produce more discriminative

feature embeddings. Given the dense feature I = fθ(x) ∈ RH×W×D for an image x, we can derive

the pixel-wise embedding i ∈ RD for all i ∈ I. Then, the InfoNCE loss [25] can be defined as:

LNCE
i =

1

|Pi|
∑

i+∈Pi

− log
exp(i · i+/τ)

exp(i · i+/τ) +
∑

i−∈Ni
exp(i · i−/τ)

, (2)

where i serves as the anchor point, Pi and Ni corresponds to two set of pixel-wise embeddings

for the positive and negative samples, respectively. The intuition behind Eq.2 is that we pull

positive sample pairs closer and push negative sample pairs apart. As we are tackling image data

with a considerable amount of pixels, it is impractical to make contrast between every possible

pairs. Instead, we need an effective sampling strategy for anchor points and hard examples. In

this work, we adapt the sampling strategy1 proposed by [6] to the context of FSS pre-training.

Specifically, the clasifier in the pre-training stage generally consists of |C| + 1 classes, where the

extra one denotes the background. We exclude the background pixels from anchor point sampling,

as it may belong to any unlisted semantic categories. Note that the sampling is performed within

a mini-batch, so a sample pair may include pixels drawn from different images. A pixel sample

falls into Pi if its semantic category is identical to the anchor point, and it falls into Ni otherwise.

Combining the pixel-wise cross-entropy loss in Eq.1 and the pixel-to-pixel loss in Eq.2, the

pre-training loss can be computed as follows:

LPT = Lce + λLctr =
1

|I|
∑
i∈I

(LCE
i + λLNCE

i ), (3)

where λ is a positive coefficient balancing the two terms. By regularizing the embedding space

1For simplicity, we refer the readers to the original work for more details.
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through Lctr, the segmentation backbones explores the global structures of the data and produces

more generic embeddings. We present our ablation studies in Section 4.3 to validate it efficacy.

3.4 GFSS: Reformulating Cross-Entropy Loss

We expand our work into GFSS to cater the need for base class knowledge after novel class

adaptation. The shift of the task introduces a major change in the fine-tuning stage, that is, we

need to load the weights of the (|Cbase|+1)-way classifier (i.e., base classes and background) from

the pre-training stage and form a (|Cbase| + 2)-way classifier with the novel class. Most existing

GFSS works follow a convention proposed by [22], where every base and novel class instances

in a ground truth mask are exhaustively labeled. We argue that such a training scheme is by

no means practical since gathering such comprehensive annotations can be costly and pointless.

Considering the fact that we are only concerned about the regions of a single query class in most

cases, we propose to adopt unified binary ground truth masks for both FSS and GFSS.

However, this raises a problem on fine-tuning since the ground truth mask only indicates the

region of either class of interest (c∗) or others. To cope with this issue, we aggregate the output

probabilities for other classes (i.e., C \ {c∗}) and reformulate the task to a binary classification

problem. On top of Eq.1, the modified per-pixel cross-entropy loss can be defined as:

LCE′

i = − log q̃x(i, yi), where q̃x(i, c) =


ŷi[c] if c = c∗∑

k∈C\{c∗} ŷi[k] otherwise
. (4)

Hence, the training objective for our GFSS baseline can be computed as:

Lce′ =
1

|I|
∑
i∈I

LCE′

i . (5)

3.5 GFSS: Background Modeling via Distillation

Following the training objective defined in Eq.4 and Eq.5, the model is trained to distinguish

the foreground and background regions, where the foreground corresponds to the class of interest

and the background is a collection of all other semantic categories. Though the model masters

a novel class after the fine-tuning stage, the performance drops on the base classes can be quite

significant due to the monotonous focus. This is generally termed as catastrophic forgetting.

Drawn ideas from incremental learning [26], introducing a distillation loss is a common strategy
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to preserve the knowledge from previous tasks. In the context of GFSS, we aims to introduce

a regularizer that enforces the model to make predictions that is close to the classifer in the

pre-training stage. A standard distillation loss can be defined as:

LKD
i = −

∑
c∈ybasei

qPTx (i, c) log qFTx (i, c), (6)

where ybase ∈ R|Cbase|+1 is the ground truth label in the pre-training stage, qPTx and qFTx give

the predicted probability in the Pre-Training (PT) and Fine-Tuning (FT) stage respectively. Let

ŷbase ∈ R|Cbase|+1 be the prediction drawn from the base classifier, we have qPTx (i, c) = ŷbase[c].

Given the background class cb and the novel class cn in the fine-tuning stage, we have:

qFTx (i, c) =


ŷi[cb] + ŷi[cn] if c = cb

ŷi[c] otherwise
. (7)

The intuition behind Eq.6 is that we regularize the output probability distributions from the

new classifier with the base classifier predictions. Eq.7 tackles the inconsistency of classes (i.e.,

background shift), as the background in the pre-training stage includes both the background

and the novel class in the fine-tuning stage. After introducing the distillation loss, the training

objective can be formulated as:

LFT = Lce′ + γLdistil =
1

|I|
∑
i∈I

(LCE′

i + γLKD
i ), (8)

where γ is a positive coefficient balancing the two terms. By enforcing a non-forgetting learning

objective through Ldistil, the problem of catastrophic forgetting on base classes is alleviated. We

conduct extensive experiments to investigate its impact in Section 4.4.

4 Experiment

4.1 Datasets

We evaluate the performance of the proposed methods on two widely-used FSS benchmarks,

PASCAL-5i [15] and COCO-20i [27]. PASCAL-5i is built from PASCAL VOC [1] and contains

20 semantic classes that are evenly divided into 4 folds. COCO-20i is built from MS-COCO [2]

and consists of 80 semantic classes that are evenly divided into 4 folds. For both datasets, the

model is trained on 3 folds and tested on the remaining one in a cross-validation manner.
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4.2 Implementation Details

Pre-training. We build our model based on PSPNet [10] with a ResNet-50 [28] backbone. We

adopt the standard supervised learning to train the segmentation backbone on each fold of the

FSS dataset, which consists of 16/61 classes (background included) for PASCAL-5i and COCO-

20i respectively. We train the model for 100 epochs on PASCAL-5i and 20 epochs for COCO-20i

with a per-pixel cross-entropy loss (Eq.1). The balancing coefficient λ for the contrastive loss

(Eq.2) is searched within the hyper-parameter space {0.01, 0.05, 0.1, 0.2, 0.4} and we pick the

best-performed one for each data fold. We use a SGD optimizer with an initial learning rate of

2.5e−3 with a cosine learning rate decay, a momentum of 0.9, and a weight decay of 1e−4. We

set the batch size to 12 and resize input images to 473× 473. Label smoothing is used with the

smoothing parameter ϵ = 0.1. We only apply random mirror flipping for data augmentations.

Episodic Inference. The transfer learning baseline we adopt in this work doesn’t need to be

meta-learned. In other words, we can perform inference (i.e., fine-tuning with the support set S)

on a given episode right after the pre-training stage. We use a SGD optimizer with a learning

rate of 1e−1 and perform 100 optimization steps. We adopt a standard per-pixel cross-entropy

loss for FSS, and we use the proposed training objectives (Eq.8) for GFSS.

Evaluation Metrics. We adopt the widely used mean Intersection over Union (mIoU) as the

evaluation metric. It is computed by averaging the IoU values of all classes in a fold. Following

the convention in FSS, the model is validated on 20000 randomly sampled episodes. For GFSS,

we randomly sample an extra base set B = {(xb,mb)} to evaluate the performance on Cbase.

4.3 FSS: Ablation Studies

We incorporate the proposed pixel-to-pixel contrastive loss (Eq.2) into a transfer learning base-

line to evaluate its efficacy. Specifically, we first pre-train a baseline backbone with standard

per-pixel cross-entropy loss (Eq.1) and then pre-train another backbone that introduces pixel-to-

pixel contrastive loss (Eq.2). Then we evaluate the embeddings produced by different backbones

through an FSS baseline model. Following the convention, we conduct experiments on two clas-

sic benchmarks, PASCAL-5i and COCO-20i [1, 2], and report the mean IoU on novel classes

under 1-shot and 5-shot settings. As shown in Table 1, the proposed contrastive loss exhibits

sizable performance gains on COCO-20i (+1.2% for 1-shot and +0.5% for 5-shot), whereas the

performance degrades on PASCAL-5i (-1.2% for 1-shot and -2.3% for 5-shot). Such results can

be expected as contrastive learning heavily relies on the variety of classes. On that note, the
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20 semantic classes on PASCAL-5i may be inadequate for the model to distinguish between the

numerous semantic classes in practice, whereas the 80 semantic classes on COCO-20i entail much

richer semantic information and thus result in more generic feature embeddings.

Dataset Method 1-shot Novel mIoU 5-shot Novel mIoU
Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

PASCAL-5i
Baseline 54.5 62.2 60.4 46.4 55.9 61.4 70.5 71.6 59.6 65.8
w/ Lctr 53.6 62.3 58.0 45.0 54.7 59.8 69.4 67.9 56.7 63.4

∆ -0.9 +0.1 -2.4 -1.4 -1.2 -1.6 -1.1 -3.8 -2.9 -2.3

COCO-20i
baseline 30.2 33.4 30.3 32.4 31.6 40.6 42.8 38.1 42.4 41.0
w/ Lctr 31.6 35.2 31.5 32.7 32.8 39.1 44.5 40.2 41.9 41.4

∆ +1.4 +1.8 +1.2 +0.3 +1.2 -1.5 +1.8 +2.1 -0.5 +0.5

Table 1: Ablation studies of contrastive pre-training on PASCAL-5i and COCO-20i.

4.4 GFSS: Ablation Studies

In the context of GFSS, we load the base classifier weights from the pre-training stage to perform

predictions on base classes. Interestingly, we found that this simple expansion of classifer is also

beneficial to the performance on novel classes. As shown in Table 2, we observe performance

gains of +1.8% and +2.6% on PASCAL-5i and COCO-20i under 1-shot setting. We suppose

this is because the base classifier helps filter out some confusing regions under extremely limited

data. This gain effect becomes progressively weaker as the number of training samples increases.

Notably, the performance degrades on COCO-20i under 5-shot settings, and we suspect that the

misclassification of novel classes as base classes can be accumulated, which could result in a more

pronounced impact when there are more possible semantic categories.

Dataset CLS Width 1-shot Novel mIoU 5-shot Novel mIoU
Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

PASCAL-5i
2 54.5 62.2 60.4 46.4 55.9 61.4 70.5 71.6 59.6 65.8

|Cbase|+ 2 58.8 64.8 59.5 47.8 57.7 62.7 71.7 72.1 60.9 66.9
∆ +4.4 +2.7 -1.0 +1.4 +1.8 +1.3 +1.2 +0.5 +1.4 +1.1

COCO-20i
2 30.2 33.4 30.3 32.4 31.6 40.6 42.8 38.1 42.4 41.0

|Cbase|+ 2 31.1 37.5 33.5 34.6 34.1 40.7 42.0 35.8 41.9 40.1
∆ +0.9 +4.1 +3.2 2.2 +2.6 +0.0 -0.8 -2.3 -0.5 -0.9

Table 2: Comparison of FSS results using 2-way classifier and (|Cbase|+ 2)-way classifier. Their
training objectives are Lce (Eq.1) and Lce′ (Eq.4), respectively. The classifier weights
for base classes are directly drawn from the pre-training stage.

We investigate the efficacy of the proposed loss (Eq.8) for the fine-tuning stage using different

distillation weights (γ). As a regularizer that preserve the knowledge on base classes, enlarging

the distillation weight generally increases the performance on base classes and may degrade

the performance on novel classes if the training samples are extremely limited (e.g., under 1-

shot setting). According to Table 3, we can observe a consistent performance improvement on
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base classes as we enlarge the distillation weight. Meanwhile, the 1-shot novel mIoU gradually

decreases accordingly. We also notice that the effect of distillation varies across folds, for example,

introducing distillation always boosts novel mIoU on Fold-2 but usually degrades the performance

on Fold-3. This suggests that the correlations between base and novel categories play an important

role in terms of the efficacy of distillation. In particular, we find that distillation tends to perform

well if one of the base classes is similar to a query (novel) class (e.g., bus and train), as it helps

the model clarify the confusing semantic categories.

NS γ
Base mIoU Novel mIoU

Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

1

0 52.3 43.8 47.7 52.0 48.9 31.1 37.5 33.5 34.6 34.1
5 54.9 (+2.6) 45.1 (+1.3) 49.5 (+1.8) 52.7 (+0.7) 50.5 (+1.6) 31.5 (+0.4) 37.6 (+0.1) 33.8 (+0.3) 34.7 (+0.1) 34.4 (+0.3)
10 55.0 (+2.7) 45.7 (+1.9) 50.0 (+2.3) 52.9 (+0.9) 50.9 (+2.0) 31.0 (-0.1) 37.2 (-0.3) 33.7 (+0.2) 34.5 (-0.1) 34.1 (+0.0)
20 55.2 (+2.9) 46.3 (+2.5) 50.4 (+2.7) 53.0 (+1.0) 51.2 (+2.3) 30.0 (-1.1) 36.5 (-1.0) 33.5 (+0.0) 34.1 (-0.5) 33.5 (-0.6)

5

0 50.8 41.6 46.3 50.8 47.4 40.7 42.0 35.8 41.9 40.1
5 53.1 (+2.3) 42.6 (+1.0) 47.2 (+0.9) 52.0 (+1.2) 48.7 (+1.3) 41.2 (+0.5) 42.1 (+0.1) 36.2 (+0.4) 41.4 (-0.5) 40.2 (+0.1)
10 53.5 (+2.7) 43.3 (+1.7) 47.9 (+1.6) 52.3 (+1.5) 49.3 (+1.9) 41.0 (+0.3) 42.2 (+0.2) 36.5 (+0.7) 41.3 (-0.6) 40.2 (+0.1)
20 53.9 (+3.1) 44.2 (+2.6) 48.7 (+2.4) 52.7 (+1.9) 49.9 (+2.5) 40.9 (+0.2) 42.1 (+0.1) 36.7 (+0.9) 41.5 (-0.4) 40.3 (+0.2)

Table 3: Comparison of GFSS results with different distillation weights (γ) on COCO-20i, where
NS refers to number of shots. γ = 0 indicates the baseline with no distillation loss.

NS MT Base mIoU on PASCAL-5i Novel mIoU on PASCAL-5i

Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

1 B 44.8 54.9 61.6 56.9 54.5 58.8 64.8 59.5 47.8 57.7
DL 65.4 (+20.6) 70.4 (+15.5) 71.4 (+9.8) 71.4 (+14.5) 69.6 (+15.1) 59.1 (+0.3) 61.0 (-3.8) 56.4 (-3.1) 47.1 (-0.7) 55.9 (-1.8)

5 B 35.6 55.1 61.3 54.6 51.6 62.7 71.7 72.1 60.9 66.9
DL 59.9 (+24.3) 70.7 (+15.6) 71.6 (+10.3) 72.0 (+17.4) 68.6 (+17.0) 62.6 (-0.1) 72.2 (+0.5) 71.1 (-1.0) 61.0 (+0.1) 66.7 (-0.2)

NS MT Base mIoU on COCO-20i Novel mIoU on COCO-20i

Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean

1

B 52.3 43.8 47.7 52.0 48.9 31.1 37.5 33.5 34.6 34.1
B† 48.2 (-4.1) 47.0 (+3.2) 53.6 (+5.9) 53.0 (+1.0) 50.5 (+1.6) 29.9 (-1.2) 34.0 (-3.5) 32.2 (-1.3) 33.6 (-1.0) 32.4 (-1.7)
DL 55.0 (+2.7) 45.7 (+1.9) 50.0 (+2.3) 52.9 (+0.9) 50.9 (+2.0) 31.0 (-0.1) 37.2 (-0.3) 33.7 (+0.2) 34.5 (-0.1) 34.1 (+0.0)
DL† 49.5 (-2.8) 48.3 (+4.5) 55.0 (+7.3) 54.1 (+2.1) 51.7 (+2.8) 28.1 (-3.0) 32.0 (-5.5) 31.7 (-1.8) 31.8 (-2.8) 30.9 (-3.2)

5

B 50.8 41.6 46.3 50.8 47.4 40.7 42.0 35.8 41.9 40.1
B† 46.2 (-4.6) 46.4 (+4.8) 52.1 (+5.8) 51.4 (+0.6) 49.0 (+1.6) 39.1 (-1.6) 45.4 (+3.4) 40.7 (+4.9) 42.9 (+1.0) 42.0 (+1.9)
DL 53.5 (+2.7) 43.3 (+1.7) 47.9 (+1.6) 52.3 (+1.5) 49.3 (+1.9) 41.0 (+0.3) 42.2 (+0.2) 36.5 (+0.7) 41.3 (-0.6) 40.2 (+0.1)
DL† 47.9 (-2.9) 47.2 (+5.6) 53.5 (+7.2) 53.0 (+2.2) 50.4 (+3.0) 40.0 (-0.7) 45.4 (+3.4) 41.3 (+5.5) 42.6 (+0.7) 42.3 (+2.2)

Table 4: GFSS results on PASCAL-5i and COCO-20i, where NS refers to number of shots, MT
refers to method, B refers to baseline, DL refers to baseline with distillation loss (γ =
10), † refers to using backbone weights from contrastive pre-training.

Table 4 presents the GFSS results on PASCAL-5i and COCO-20i, where all the proposed tech-

niques have been integrated. As discussed in Section 4.3, contrastive pre-training tends to exhibit

performance gains when the size of semantic categories is large, so we only adopt it on COCO-20i.

The experiment results on PASCAL-5i demonstrate the significant performance gains (+15.1%

under 1-shot setting and +17.1% under 5-shot setting) after introducing the distillation loss, but

it inevitably degrades the performance on novel classes (-1.8% under 1-shot setting and -0.2%

under 5-shot setting). As shown by the experiments on COCO-20i, all the proposed techniques

offer performance gains on base classes. With properly-chosen hyper-parameters (i.e., λ and

γ), we can also improve the mean IoU on novel classes, especially when more training samples
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are available. By combining contrastive pre-training and background knowledge distillation, our

model well balances and enhances the performance on GFSS benchmarks.

4.5 Qualitative Results

We also conduct ablation studies qualitatively by visualizing the prediction masks in Figure 3.

As shown in the left figure, the proposed contrastive loss (Eq.2) allows the backbone to learning

more generic feature embedding that help it distinguish between various semantic categories and

segment the boundary of different instances. As demonstrated in the right figure, the distillation

loss (Eq.6) preserves the knowledge on base classes and alleviates catastrophic forgetting.

Figure 3: Qualitative Ablation on Contrastive Loss (left) and Distillation Loss (right).

5 Discussion & Conclusion

This work presents a practical GFSS training scheme along with two plug-and-play techniques.

In the pre-training stage, we complement standard per-pixel cross-entropy loss by introducing

a contrastive loss that models pixel-to-pixel correlations. It helps produce more discriminative

feature embeddings and offers sizable performance gains, especially when adequate semantic

categories are provided. Besides, we propose to adopt unified binary mask for both FSS and

GFSS, which no longer requires annotating novel images exhaustively and is closer to real-world

scenarios. On top of this training scheme, we reformulate the cross-entropy loss and devise

a distillation loss to model background information and avoid catastrophic forgetting. Their

efficacy has been shown by extensive experiments on PASCAL-5i and COCO-20i.

Remarkably, the proposed contrastive and distillation loss are not restricted to the context of

FSS and GFSS. Since the pixel-to-pixel contrastive loss improves the generalization ability of the
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feature representations, its core idea is highly portable to any dense prediction tasks in computer

vision. Furthermore, the distillation loss is also widely applicable to any data-efficient learning

tasks (e.g., few-shot recognition & detection) to alleviate the problem of catastrophic forgetting.

Last but not least, there are many possibilities for us to refine the approaches proposed in this

work. For example, we can follow [5] and introduce a memory bank to store high-quality samples

for contrastive learning. Besides, we may also borrow ideas from constraint-based fine-tuning [29]

to mitigate the performance drops on novel classes during distillation.
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