
RepMAF: When Re-parameterization Meets Multi-scale Attention

Haoming Liu
NYU Shanghai
hl3797@nyu.edu

Chen Song Zhang
NYU Courant
cz2119@nyu.edu

Jiayao Jin
NYU Shanghai
jj2915@nyu.edu

Abstract

This project proposes a novel RepMAF block, which can
be used as the building block of feature extraction networks.
The RepMAF block explores a paradigm of fusing features
through channel-wise attention while its multi-branch de-
sign ensures the robustness of the representations of differ-
ent scales. Moreover, the re-parameterizable property al-
lows friendly deployment on mobile devices. Extensive ex-
periments have been performed on the CIFAR-10 dataset,
and the code is available at: https://github.com/
hmdliu/RepMAF.

1. Introduction
Convolutional Neural Network (CNN) has achieved

great success in visual understanding with various applica-
tions in wearable devices, IoT devices, and mobile phones.
However, such devices require adequate visual recognition
performance but lack in computational power to support it.
With limited budget in computational resources, it is im-
practical to employ a model with an extensive amount of
trainable parameters or intricate connections. Hence, it’s
meaningful to improve the performance of CNN without
extra computations during model inference.

With more model architectures being proposed, we have
an increasing number of powerful baseline models for fea-
ture extraction. However, the search of new architectures
inevitably require a huge amount of human work and GPU
hours. Accordingly, some plug-and-use modules (e.g., SE
block, SimAM block, etc.) seem to be a good solution,
which can be directly combined with various up-to-date ar-
chitectures to improve the performance [8, 17].

In this project, we aim to discover a lightweight yet ef-
fective building block for the models deployed on mobile
and IoT devices. We propose a RepMAF block that can
fully utilize multi-scale features through attentional fusion,
and is also friendly to devices with limited computational
power given the re-parameterizable property. Extensive ex-
periments have been performed on the CIFAR-10 dataset to
show the effectiveness of the proposed architecture [10].

2. Related Works

2.1. From Single-path to Multi-branch

After VGG achieved above 70% top-1 classification ac-
curacy on the ImageNet dataset, there have been many re-
search models dedicated to learning complementary fea-
tures through multi-branch designs which inevitably com-
plicates the model architecture while gaining better perfor-
mace [1, 13]. The Inception network includes convolu-
tion branches with different filter sizes as well as a pooling
branch to gain various receptive fields. ResNet proposed a
simplified two-branch architecture which boosted the per-
formance of deeper networks. DenseNet made the network
topology even more complicated by connecting low-level
and high-level layers [7, 9, 14].

Essentially, multi-branch designs enable different net-
work components to have distinctive receptive fields, which
increases the variety and robustness of the representa-
tions. However, the complicated branching strategy may
reduce the degree of parallelism, hence slowing down the
inference-time.

2.2. Structural Re-parameterization

Recently, the notion of structural re-parameterization
is proposed, which aims to use different mathematically
equivalent architectures for training and inference [5]. With
properly designed building blocks, it is possible to apply
multi-branch architectures for training and re-parameterize
the fine-tuned model through merging some of its compo-
nents. In this way, we are able to achieve an inference-time
model with fewer parameters and faster inference speed.

There have been a few works that explored the effec-
tiveness of structural re-parameterization. ACNet decom-
poses a K × K convolution layer into three branches with
filters of size K × K, K × 1, and 1 × K while training.
ResRep is a lossless CNN pruning method based on the
trick of re-parameterization, which can slim down a stan-
dard ResNet-50 with 76.15% accuracy on ImageNet to a
narrower architecture with only 45% FLOPs and no accu-
racy drop. RepVGG designs a re-parameterizable building
block that can be converted to a plain VGG-like network

1

https://github.com/hmdliu/RepMAF
https://github.com/hmdliu/RepMAF


through mathematically equivalent transformations. DBB
enhances the representational capacity of a single convolu-
tion by combining diverse branches of different scales and
complexities to enrich the feature space, which introduces
more choices for re-parameterizable branches [2, 3, 4, 5].

2.3. Attention Mechanism

Attention mechanisms have been widely used in com-
puter vision tasks, serving as a tool to emphasize salient fea-
tures as well as to suppress insignificant features. Non-local
neural network introduced a non-local operation which cap-
tures long-range spatial dependencies. SENet proposed an
SE block to model inter-dependencies between different
channels and to recalibrate channel-wise features. SKNet
adopted a channel attention module to adaptively adjust the
receptive field size of the network based on multiple scales
of input information [8, 11, 16].

3. Methods
3.1. Re-parameterizable Module

ResNet is one of the most prominent backbone architec-
ture so far, whose information flow can be formulated as
y = g(x)+f(x), where f is learned by the residual branch,
and g denotes the shortcut branch (i.e. g(x) = x when
the input channels and output channels are identical; other-
wise, there is a mapping to the output channels through a
1 × 1 conv). A possible explanation for ResNet’s success
is that such a multi-branch architecture makes the model an
implicit ensemble of numerous shallow models [15]. With
two distinctive paths in each block, a ResNet with n blocks
can be interpreted as an ensemble of 2n models.

However, such a multi-branch design has its drawback at
inference-time. It requires twice as much memory to store
intermediate results, and incurs extra run-time to sum the
results up. The recently proposed RepVGG block alleviates
this problem to some extent [5]. It constructs a multi-branch
structure that is training-time-only. When the input chan-
nels and output channels are identical, the information flow
of RepVGG block can be denoted as y = x+ f(x) + g(x),
where f is the residual branch with 3 × 3 conv, and g is an
extra branch with 1 × 1 conv. In this way, we can get an
ensemble of 3n models with n RepVGG blocks.

If the network is simply a stack of RepVGG blocks, the
inference-time model will be a VGG-like plain network,
which is achieved by applying some mathematically equiva-
lent transformations on the fine-tuned weights of a training-
time network [5, 13]. From a high level perspective, the
re-parameterization can be formulated as:

conv3×3(x,Wrep) = BN(conv3×3(x,W3×3))

+BN(conv1×1(x,W1×1))

+BN(x)

(1)

Figure 1. Structural re-parameterization of a RepVGG block,
where Cin = Cout = 2. The weight of a 3 × 3 conv is of size
(2, 2, 3, 3), and weight of a 1 × 1 conv is of size (2, 2, 1, 1). The
figure is drawn from the original paper.

Notably, both identity mapping and 1 × 1 conv can be
treated as a special case of a 3 × 3 conv [5]. Therefore, we
can convert all of them to a mathematically equivalent 3×3
conv. For the identity branch, we can construct a identity
matrix as the kernel; whereas for the 1× 1 conv branch, we
can pad the kernel to 3 × 3 with zeros. This way, we can
achieve equivalent 3× 3 conv at all three branches.

Additionally, as shown in Figure 1, the conv layer fol-
lowed with a BN layer can be converted to conv layer with
bias [5]. Here, we denote the kernel of a 3 × 3 conv
layer as W (3) ∈ RCout×Cin×3×3, where Cin and Cout are
the number of input and output channels respectively. We
also denote the kernel of a 1 × 1 conv layer as W (1) ∈
RCout×Cin , and denote the accumulated mean, standard de-
viation and learned scaling factor and bias of the BN layers
as µ(i), σ(i), γ(i), β(i), where i = 0, 1, 3 and corresponds to
the BN layer at the identity, 1×1 conv, and 3×3 conv branch
respectively. In addition, we denote the input and output
as X ∈ RN×Cin×H1×W1 and Y ∈ RN×Cout×H2×W2 re-
spectively, and denote the convolution operator as ∗. When
H1 = H2,W1 = W2, we have:

Y = BN(X ∗W (3), µ(3), σ(3), γ(3), β(3))

+BN(X ∗W (1), µ(1), σ(1), γ(1), β(1))

+BN(X,µ(0), σ(0), γ(0), β(0))

(2)

The last term can be omitted if Cin ̸= Cout. Then, by the
definition of a BN layer, for 1 ≤ i ≤ Cout:

BN(X,µ, σ, γ, β):,i,:,: = (X:,i,:,: − µi) ·
γi
σi

+ βi (3)

2



Let {W ′, b′} be the kernel and bias converted from
{W,µ, σ, γ, β}, we have:

W ′
i,:,:,: =

γi
σi

·Wi,:,:,:, b′i = −µiγi
σi

+ βi (4)

Accordingly, it’s easy to verify that ∀ 1 ≤ i ≤ Cout:

(X ∗W ′):,i,:,: + b′i = BN(X ∗W,µ, σ, γ, β):,i,:,: (5)

Then we can derive that:

Y = X ∗W ′(3)
3×3 +X ∗W ′(3)

1×1 +X ∗W ′(3)
idt

= X ∗W (3)
rep

(6)

Hence, we’ve shown the mathematical equivalence between
the training-time and inference-time architecture of the
RepVGG block. In this project, we use the RepVGG block
to replace all the 3 × 3 convolution in the network, which
can learn a more robust representation through each block.

3.2. Channel-wise Attention

Attention mechanisms have been widely used as a tool to
emphasize salient features and to suppress insignificant fea-
tures. Among the proposed attention blocks, the Squeeze-
and-Excitation (SE) block is a simple yet effective one,
which can adaptively recalibrate channel-wise feature re-
sponses by explicitly modeling interdependencies between
channels [8]. As a plug-and-use module, the Squeeze-and-
Excitation block can bring significant improvements in per-
formance on most existing tasks with the cost of additional
computations.

Figure 2. Squeeze-and-Excitation Block. Fig. from original paper.

The SE building block includes two operators: Squeeze
and Excitation. The whole Squeeze operator generates
channel descriptors through global average pooling to ag-
gregate channel-wise statistics. Formally, a channel em-
bedding vector z ∈ RC is generated by shrinking an input
U ∈ RC×H×W through its spatial dimensions, and then the
c-th dimension of the embedding vector z is given by:

zc = Fsq(Uc) =
1

H ×W

H∑
i=1

W∑
j=1

Uc(i, j) (7)

To make use of the information aggregated by the Squeeze
operator, the Excitation operator aims to fully capture

channel-wise dependencies through a gating mechanism
with a sigmoid activation:

s = Fex(z,W ) = σ(W2δ(W1z)) (8)

where δ denotes the ReLU fuction, σ denotes the Sigmoid
function, W1 ∈ RC

r ×C and W2 ∈ RC×C
r denote the

weights of the two fully connected (FC) layers with a re-
duction ratio r1, which significantly reduces the number of
trainable parameters. The final output of a SE block is given
by rescaling U with s through scalar multiplication:

X̃c = Fscale(Uc, sc) = scUc (9)

Hence, we can rescale the channel dimension of the input
feature map to refine the feature representation. The Rep-
MAF module proposed in this project adopts this channel-
wise rescaling idiom and applies it on feature fusion which
we will discuss in the following section.

3.3. RepMAF Module

Originally, this project aims to find a re-parameterizable
block that can learn more robust representations (compared
to the RepVGG block), and we attempted to aggregate other
re-parameterizable transformations in the multi-branch de-
sign, such as sequential convolutions without non-linearity
and average pooling. Such designs were able to main-
tain the plain VGG-like structure after re-parameterization,
and results in a faster inference speed. However, our ex-
periments have demonstrated that adding new branches (to
a structure that is re-parameterizable to plain network at
inference-time) only provides a slight improvement on the
classification accuracy, so we presented these experiments
in the appendix.

In comparison, we found that maintaining a non-plain
structure at inference-time usually secures a higher classi-
fication accuracy, but inevitably takes longer to inference.
Specifically, we proposed a RepMAF block based on multi-
scale features and channel-wise attention. With the re-
parameterizable property preserved to some extent, it can
be used as a building block in lightweight backbones de-
ployed on mobile devices.

As shown in figure 3, a RepMAF module consists of two
stages: feature extraction and feature fusion, where the for-
mer is done by two parallel RepVGG blocks at different
scales, and the latter achieved by the Multi-scale Attention
Fusion (MAF) block proposed in this project. It needs to be
emphasized that the MAF block has two versions with dis-
tinctive guided features, and both methods have been eval-
uated in the Experiment section.

Inspired from the Squeeze-and-Excitation block, the
Multi-scale Attention Fusion block is implemented via two
operators: Squeeze, and Select. The former captures the

1A usual choice of the reduction ratio is r = 16.

3



Figure 3. (a) RepMAF Block Architecture; (b) Multi-scale Attention Fusion Block V1; (c) Multi-scale Attention Fusion Block V2.

channel-wise interdependencies in the two feature maps and
generates an embedding vector as the guided feature for fu-
sion; whereas the latter models the importance of each input
channel through a gating mechanism, and adaptively select
and fuse useful feature from the input feature maps.

Squeeze. Let X,Y ∈ RC×H×W be the input feature
maps, where one of them is obtained by the nearest neighbor
interpolation. Our goal is to find a mapping fsq(X,Y ) = g,
where g is the guided feature used for the ensuing fusion
stage. Notably, the Squeeze operator in the MAF block in-
cludes the functionality of both the Squeeze operator and
part of the Excitation operator in SE block [8]. The imple-
mentation of the two versions are as follow:

Version 1 This version aims to generate the guided fea-
ture g ∈ RC

r through a raw fusion, where r is a constant
reduction ratio. Formally, we first apply a raw fusion via
element-wise summation:

U = X + Y (10)

Here, we also use a global average pooling to aggregate the
channel embedding vector z ∈ RC , similar to equation 7.
Then, we compress the channel-wise statistics to obtain the
guided feature g ∈ RC

r :

g = Fsq(z,Wsq) = δ(BN(Wsqz)) (11)

where δ denotes the ReLU function, BN is a batch norm
layer, and Wsq ∈ RC

r ×C is a fully connected (FC) layer.
Version 2 Different from the previous version, this ver-

sion aims to preserve the channel-wise statistics from the
input feature maps. Hence, we apply global average pool-
ing on X and Y respectively to obtain the channel embed-
ding vectors z1, z2 ∈ RC . Then, we use a shared guided
feature generator Fsq (as we did in equation 11) to compute
the guided feature g1, g2 ∈ RC

r respectively:

g1 = Fsq(z1,Wsq) = δ(BN(Wsqz1)) (12)
g2 = Fsq(z2,Wsq) = δ(BN(Wsqz2)) (13)

where δ denotes the ReLU function, BN is a batch norm
layer, and Wsq ∈ RC

r ×C is a fully connected (FC) layer.

Finally, we can get the guide feature g = [g1 g2] ∈ R 2C
r

through concatenation.
Select. Let g ∈ RCg be the guided feature we obtained

through the Squeeze operator. Our goal is to generate the
channel attention weights s1, s2 ∈ RC to scale the input
feature maps by a coefficient between 0 and 1, and sum the
scaled feature maps as the fusion output.

Here, we adopt two Sigmoid gates to generate channel-
wise attention weights:

s1 = σ(W1g), s2 = σ(W2g) (14)

where σ demotes the Sigmoid function, and W1,W2 ∈
RC×Cg are two fully connected (FC) layers corresponding
to the two input feature maps. Then, the fusion output is
given by:

X̃c = Fselect(Xc, Yc, s1c , s2c) = s1cXc + s2cYc (15)

In this way, we can get a refined feature map based on adap-
tively selected features from both inputs.

3.4. Network Architecture

For a faster iteration of block architectures, this project
uses a lightweight setting to evaluate the effectiveness of
the building blocks. Apart from the input block that uses
5 × 5 convolution (padding = 2), the rest of the feature
extraction network adopts the building blocks to be eval-
uated by default (e.g., 3 × 3 conv layer, RepVGG block,
and RepMAF block, etc.). The channels for each stages are
[64, 128, 256, 512], and the number of blocks at each stage
are [1, 4, 3, 1] respectively. A simple linear classifier is used
for classification, which consists of a global average pool-
ing layer, a dropout layer, and a FC layer mapping to the
number of classes.

4. Experiments
4.1. Dataset and Implementation Details

We evaluate the performance of our models on the
CIFAR-10 dataset [10]. It consists of colored natural im-
ages with 32×32 pixels drawn from 10 classes. The training

4



Building Block Top-1 Train Params Inference Params Train Fwd Speed Inf. Fwd Speed
(& Attention) Acc.(%) (M) (M) (img/s) (img/s)
VGG 93.02 3.66 3.66 3484 3484
VGG + SE 93.41 3.74 3.74 3263 3263
RepVGG 93.26 4.08 3.66 2889 3451
RepVGG + SE 93.68 4.15 3.74 2745 3275
BiRepVGG 93.22 8.14 7.31 1632 2010
BiRepVGG + SE 93.66 8.29 7.46 1542 1878
RepMAF-V1 94.26 8.25 7.43 2170 2617
RepMAF-V2 94.36 8.33 7.50 2184 2640

Table 1. Results on CIFAR-10 trained for 150 epochs with standard data augmentation.

and test sets contain 50,000 and 10,000 images respectively.
We adopt a standard data augmentation scheme (i.e. mirror-
ing and shifting) that is widely used on this dataset [7, 9].
We trained for 150 epochs with a batch size of 64 and used a
SGD optimizer with a momentum of 0.9. The initial learn-
ing rate is 0.1 and is adjusted according to a polynomial
scheduler 2. We use a weight decay of 0.0005 and set the
dropout in the classifier as 0.5. Though the training set-
ting might be better tuned for each building block, we still
use the same setting for all the experiments to ensure a fair
comparison and analysis.

The experiments are performed on the Greene cluster of
NYU HPC with a single RTX8000 GPU. The forward speed
is estimated by the average speed for inferring the CIFAR-
10 validation set 20 times. All the classification accuracy
and forward speed reported in this project are the median of
at least three experiments with identical model settings.

4.2. Network Performance

Table 1 compares RepMAF with the classic designs
and their combinations, including VGG, RepVGG, and SE
block [5, 8, 13]. We evaluate the top-1 accuracy for clas-
sification as well as the number of trainable parameters at
both training-time and inference-time. As the RepVGG pa-
per suggested, theoretical FLOPs may not be a good mea-
sure for the density of computation due to the complexity
of branching [5]. Hence, we evaluate the speed of infer-
ence directly on a RTX8000 GPU with a batch size of 64.
Considering the fact that a RepMAF block has two paral-
lel RepVGG blocks, which contains roughly twice as much
parameters as the traditional RepVGG blocks, we construct
a BiRepVGG block3 that has a similar parallel structure
to maintain our motif of fair comparison. By default, we
insert the SE blocks between the convolution unit and fu-
sion/activation unit.

In terms of classification accuracy, we can observe that

2lr = base lr × 0.91−
curr iter
total iter

3The two branches of the BiRepVGG block use feature maps of size
16× 16, which achieves the highest accuracy among all the settings.

the SE block indeed improves the classification accuracy
with slight additional computation costs. Comparing the
results from RepVGG and BiRepVGG, we can assert that
simply stacking branches may not secure a better perfor-
mance; whereas the RepMAF blocks, achieves the high-
est accuracy under the same training setting while taking
advantage of a properly-designed feature fusion module.
Clearly, the trick of structural re-parameterization reduces
the number of trainable parameters at inference-time and
boosts the speed of inference.

4.3. Comparison with variants

Building Block Data Attention Params Top-1
(& Attention) Aug. Layers (M) Acc.(%)
RepVGG - 4.08 91.35
RepVGG ✓ - 4.08 93.31
RepVGG + SE 1 4.65 91.33
RepVGG + SE ✓ 1 4.65 93.59
RepVGG + SE 2 4.15 91.39
RepVGG + SE ✓ 2 4.15 93.68

Table 2. Comparison on data augmentation and channel attention
design. The 2-layer SE block sets reduction ratio r = 16.

Building Block Branch 1 Branch 2 Top-1
(& Attention) Feats Size Feats Size Acc.(%)
BiRepVGG + SE 16× 16 16× 16 93.66
BiRepVGG + SE 16× 16 8× 8 91.52
BiRepVGG + SE 8× 8 8× 8 91.12
RepMAF-V1 16× 16 16× 16 94.05
RepMAF-V1 16× 16 8× 8 94.26
RepMAF-V1 8× 8 8× 8 91.57
RepMAF-V2 16× 16 16× 16 94.09
RepMAF-V2 16× 16 8× 8 94.36
RepMAF-V2 8× 8 8× 8 91.23

Table 3. Comparison on the size of feature maps.

5



Table 2 evaluates the SE block in terms of data augmen-
tation and the number of FC layers [8]. Interestingly, the SE
block only achieves a significant improvement on the accu-
racy when we apply the standard data augmentation. Apart
from data augmentation, the results have demonstrated that
the bottleneck design in the SE block can boost the perfor-
mance without introducing many parameters.

Table 3 explores how the size of the feature maps in-
fluence the performance of the BiRepVGG block and the
RepMAF block. The results have shown that the larger the
feature maps are, the higher accuracy that the BiRepVGG
block can achieve. On the contrary, for the RepMAF block,
the multi-scale combination seems to be the preeminent
choice. We believe that the feature fusion method imple-
mented in the RepMAF block is effective in integrating
complementary features from the given input.

5. Discussion

Overall, the proposed RepMAF block has achieved a sat-
isfying classification accuracy with a reasonable inference
speed. In summary, we accredit the success of the RepMAF
block to three specific designs: 1) The MAF fusion module
is able to adaptively integrate complementary features from
the inputs through channel-wise attention, which is a novel
attempt according to our knowledge; 2) The RepVGG block
learns more robust representations during training (without
a cost of inference speed); 3) The RepMAF block has re-
ceptive fields at different scales, which is achieved by the
parallel structure.

A potential improvement on the implementation of
the RepMAF block is to merge the convolution branches
through group convolution, which may further speed up
the inference. Also, we would like to emphasize that
the potential of structural re-parameterization has only
been exploited to a limited extent in this project. Based
on our experiments, we believe that using structural re-
parameterization is the future direction in multi-branch
models since a plain VGG-like structure usually causes gra-
dient explosion or disappearance when the models become
deeper.

Meanwhile, we are glad to see some recent works,
which aims to implicitly integrate identity mapping through
structural re-parameterization in a plain network, or con-
structs non-deep networks with re-parameterizable building
blocks [6, 12]. Inspired from their works, we may further
explore the potential of structural re-parameterization in
the future.

Acknowledgements. Special thanks to Professor Rob
Fergus (CSCI-GA 2271: Computer Vision, Fall 2021).

References
[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[2] X. Ding, Y. Guo, G. Ding, and J. Han. Acnet: Strengthening
the kernel skeletons for powerful cnn via asymmetric convo-
lution blocks, 2019.

[3] X. Ding, T. Hao, J. Tan, J. Liu, J. Han, Y. Guo, and G. Ding.
Resrep: Lossless cnn pruning via decoupling remembering
and forgetting, 2021.

[4] X. Ding, X. Zhang, J. Han, and G. Ding. Diverse branch
block: Building a convolution as an inception-like unit,
2021.

[5] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, and J. Sun.
Repvgg: Making vgg-style convnets great again. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 13733–13742, 2021.

[6] A. Goyal, A. Bochkovskiy, J. Deng, and V. Koltun. Non-
deep networks, 2021.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition, 2015.

[8] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu. Squeeze-and-
excitation networks, 2019.

[9] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger.
Densely connected convolutional networks, 2018.

[10] A. Krizhevsky, V. Nair, and G. Hinton. The cifar-10 dataset.
https://www.cs.toronto.edu/ kriz/cifar.html, 55(5), 2014.

[11] X. Li, W. Wang, X. Hu, and J. Yang. Selective kernel net-
works, 2019.

[12] F. Meng, H. Cheng, J. Zhuang, K. Li, and X. Sun. Rmnet:
Equivalently removing residual connection from networks,
2021.

[13] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition, 2015.

[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions, 2014.

[15] A. Veit, M. Wilber, and S. Belongie. Residual networks be-
have like ensembles of relatively shallow networks, 2016.

[16] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural
networks, 2018.

[17] L. Yang, R.-Y. Zhang, L. Li, and X. Xie. Simam: A sim-
ple, parameter-free attention module for convolutional neu-
ral networks. In M. Meila and T. Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research,
pages 11863–11874. PMLR, 18–24 Jul 2021.

6



6. Appendix
This section discusses some abandoned ideas that has

limited or no improvements on the classification accuracy.
The implementations can be found in the full codebase,
which is less compact compared with the one in the abstract,
but contains most of our attempts. The sheet for experiment
results is also available here.

6.1. More Re-parameterizable Branches

We introduce two extra branches into the RepVGG
block: sequential convolution without non-linearity (1 ×
1−3×3), and average pooling (kernel size=3, padding=1).
The mathematical equivalence of re-parameterizing such
branches can be found in the Diverse Branch Block pa-
per [4]. The code corresponding to this part is the
DBB Module class under basic.py.

Our results have demonstrated that the classification ac-
curacy provided by the 5-branch design is approximately
the same as that of the original 3-branch design. One pos-
sible explanation is that when all the re-parameterizable
branches are passed through various layers, they are es-
sentially still linear transformations so the representational
power may never be as good as a simple non-linear activa-
tion.

6.2. Multi-head & Unified Branch Dropout

We include multiple RepVGG blocks (without activa-
tion) that works in parallel for each building block to fol-
low a multi-head design. The output feature maps are fused
through element-summation or an extra 1 × 1 conv layer
(with the weights initialized to mimic a element-wise sum-
mation or an element-wise average). To ensure each branch
are learning various features, we proposed a unified branch
dropout strategy to randomly disable some of the parallel
branches during training. For example, assume we have
three branches [1, 2, 3] at each building block, and for a
batch of training samples, branch 1 is randomly picked to be
disabled. Then, branch 1 at all the building blocks will be
set to 0 during this iteration. Notably, the parallel branches
are also re-parameterizable since non-linear activations are
only applied after branch fusion. The code corresponding
to this part is the RepTree Module class under basic.py.

We were hoping that such a design can achieve self-
ensembling at training-time, but it did not perform to our
expectations. The version without branch dropout performs
similar to the baseline RepVGG model, which again reflects
the limitation of parallel linear transformations. On the
other hand, the version with unified branch dropout accu-
racy performs less than the baseline accuracy. One possible
explanation is that the branch-wise correspondence did not
work as anticipated, and the distribution of the feature maps
vary a lot in different iterations, which inevitably made it
harder to learn stable representations.

6.3. Multi-scale Shuffle

This idea is a prototype of the proposed RepMAF block
where we attempted to integrate multi-scale features in two
parallel RepVGG blocks. Different from the current ver-
sion, two feature maps of size 16 × 16 and 8 × 8 are for-
warded through the network. In particular, both of them in-
corporate features from the other after the convolution unit,
where the 8 × 8 features are up-sampled via nearest neigh-
bor interpolation and are added to the 16× 16 feature map.
The 16×16 features are downsampled via max pooling and
fused with the 8 × 8 feature map. The code corresponding
to this part is the RepMSS Module class under basic.py.

This design increases the accuracy to some extent and
sets up the cornerstone for the RepMAF block.

6.4. Super Augmentation

This attempt expands the standard data augmentation
we used in the experiments (i.e. mirroring and shifting).
The super augmentation approach stacks five individually-
applied transformations, including crop and flip, color jit-
ter, random affine, random perspective, and Gaussian blur.
Accordingly, the augmented dataset is five times larger and
thus requires much longer time to train. Corresponding
code can be found under dataset.py.

The super augmentation undoubtedly improves the clas-
sification accuracy, but we still adopted the standard aug-
mentation in the experiments due to the reason of excessive
training time for the super augmentations.

7

https://github.com/hmdliu/RepMAF/tree/base
https://docs.google.com/spreadsheets/d/1m40caWJlPFXLjSfmgHYkN8xCHaX62cFFWX2OyezY4EU/edit?usp=sharing
https://github.com/hmdliu/RepMAF/blob/final/net/basic.py
https://github.com/hmdliu/RepMAF/blob/final/net/basic.py
https://github.com/hmdliu/RepMAF/blob/final/net/basic.py
https://github.com/hmdliu/RepMAF/blob/base/net/dataset.py

